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Abstract

Safety fine-tuning helps align Large Language Models (LLMs) with human pref-
erences for their safe deployment. To better understand the underlying factors
that make models safe via safety fine-tuning, we design a synthetic data genera-
tion framework that captures salient aspects of an unsafe input by modeling the
interaction between the task the model is asked to perform (e.g., “design”) versus
the specific concepts the task is asked to be performed upon (e.g., a “cycle” vs. a
“bomb”). Using this, we investigate three well-known safety fine-tuning methods—
supervised safety fine-tuning, direct preference optimization, and unlearning—and
provide significant evidence demonstrating that these methods minimally transform
MLP weights to specifically align unsafe inputs into its weights’ null space. This
yields a clustering of inputs based on whether the model deems them safe or not.
Correspondingly, when an adversarial input (e.g., a jailbreak) is provided, its
activations are closer to safer samples, leading to the model processing such an
input as if it were safe.

1 Introduction

Large language models (LLMs) are commonly trained via a combination of pre-training on a large
corpus and instruction fine-tuning, wherein the model is supervised to follow instructions (Driess
et al., 2023; Team et al., 2023; Qin et al., 2024). While pre-training enables a model to learn different
capabilities (Wei et al., 2022; Bubeck et al., 2023), instruction fine-tuning enables use of open-ended,
generic inputs to control said capabilities (Ouyang et al., 2022; Wei et al., 2021; Sanh et al., 2021; Bai
et al., 2022; Raffel et al., 2020). Since this pipeline does not restrict what tasks the model can be used
for, potential misuse is left feasible under its purview (Bengio et al., 2023; Anwar et al., 2024): as
long as an instruction can be formulated and the model possesses the relevant capabilities to perform
the instructed task, it will strive to perform it. To prevent such misuse, safety fine-tuning is used as
an additional training phase for LLMs, in which the model is supervised to prioritize generation of
outputs deemed safe as per human preferences. Popular approaches for safety fine-tuning include: (i)
supervised safety fine-tuning (SSFT) (Ouyang et al., 2022); (ii) reinforcement learning with human
feedback (RLHF) (Christiano et al., 2017; Ouyang et al., 2022; Bai et al., 2022; Stiennon et al., 2020)
and its recent renditions that avoid use of an explicit reward model, e.g., DPO (Rafailov et al., 2023);
and (iii) machine unlearning (Liu et al., 2024). Despite immense use of these protocols to enable
system release (Chao et al., 2024; Sun et al., 2024), several recent works show that safety fine-tuned
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models continue to produce unsafe generations when prompted via adversarially designed inputs,
e.g., jailbreaks (Andriushchenko et al., 2024; Chao et al., 2023; Zou et al., 2023; Carlini et al., 2023).

In this work, our goal is to understand: (i) what is the safety mechanism learned by the model via
safety fine-tuning? and (ii) how are jailbreak and adversarial attacks able to bypass this mechanism?
While a few contemporary papers have investigated the mechanisms of safety fine-tuning, e.g.,
showing that such methods perform minimal alterations to model parameters that nevertheless can
change its behavior (Jain et al., 2023b; Lee et al., 2024; Prakash et al., 2024; Wei et al., 2024), tying
this analysis back with lack of robustness of safety fine-tuning is lacking in existing literature. We
aim to fill this gap by designing a well-defined synthetic data generating process wherein an input is
modeled as a function of the task the model is expected to perform (e.g., “design”), and the specific
concept the task is to be performed upon (e.g., “cycle” versus “bomb”). This separation helps us
delineate how the model distinguishes between safe versus unsafe inputs, while allowing us to model
different forms of jailbreak attacks grounded in the formalization of Wei et al. (2023). Overall, our
contributions and observations can be summarized as follows.

• Systematic setup to study safety fine-tuning and jailbreaks. We introduce a novel synthetic data
generation framework that allows controlled generation of data for safety fine-tuning, jailbreaks,
and adversarial attacks. We make careful design choices to adhere to the properties of natural
language instructions and the jailbreaks taxonomy of Wei et al. (2023), thus facilitating a thorough
safety analysis that can be backed with corroboratory experiments on real LLMs.

• Safety fine-tuning methods yield specialized transformations that primarily activate for
unsafe inputs. We provide comprehensive analyses on the mechanisms learned by safety fine-
tuning, showing that it encourages separate cluster formations for safe and unsafe samples by
minimally transforming MLP weights to specifically project unsafe samples into the null space
of its weights, and the inductive biases of safety fine-tuning which substantially reduce the local
Lipschitzness of a model for unsafe samples.

• Adversarial inputs have activations similar to safe samples, hence bypassing the safety
transform. Establishing the mechanism via which a model identifies which inputs to refuse
processing of, we are able to demonstrate that by merely following an activation distribution that
is exceedingly similar to that of safe samples, jailbreak attacks are able to ensure the minimal
MLP transformation learned to identify unsafe samples is not triggered.

2 Preliminaries

Safety fine-tuning protocols Broadly, LLM training can be divided into three stages (Team et al.,
2023; Touvron et al., 2023b): (1) (unsupervised) pre-training to build the initial model; (2) instruction
fine-tuning to optimize the pre-trained model to follow instructions and provide plausible outputs for
general queries; and (3) safety fine-tuning to ensure that the instruction fine-tuned model’s output
respects human preferences. We denote an LLM parameterized with parameters θ as fθ. Let the tuple
t = {x,yp,yl} consist of the input x, the preferred response yp, and the less preferred response
yl. Let θIT, D, and ℓ(., .) denote the parameters of the instruction fine-tuned model, the safety
fine-tuning dataset, and the standard cross-entropy loss, respectively. Using these notations, the
objective functions of safety fine-tuning methods analyzed in this work can be written as follows.

• Supervised Safety Fine-Tuning (SSFT) (Ouyang et al., 2022): argminθ E(x,yp)∼D ℓ (fθ(x),y
p).

• Unlearning (Liu et al., 2024): argminθ Et∼D
(
ℓ(fθ(x),y

p)− γℓ(fθ(x),y
l)
)
.

• Direct Preference Optimizaiton (DPO) (Rafailov et al., 2023):

argmax
θ

Et∼D log σ
(
β(ℓ(fθIT(x),yp)− ℓ(fθ(x),y

p))− γ(ℓ(fθIT(x),yl)− ℓ(fθ(x),y
l))

)
.

Note that DPO uses instruction fine-tuned model as the reference model during optimization, and
there is no yl in the case of SSFT.

Transformer block The transformer block used in this study consists of an attention module followed
by two MLP layers with a non-linear activation layer—either silu (Elfwing et al., 2018) or GELU
(Hendrycks & Gimpel, 2016)—in between. The second MLP layer writes to the residual stream of
the Transformer block (Elhage et al., 2021). Throughout this work, we denote WL and W̄L as the
parameters of the first and the second MLP layers of the L-th transformer block.
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Figure 1: Overview of our proposed synthetic setup to generate data. (a) A sample is divided
into operators, operands, and outputs. The operators are function mappings the model is expected
to perform on the operands to produce the output tokens, and are represented via tokens called task
tokens. We often use the term text tokens to refer to the operands the functions are to be performed
upon. (b) The functions are restricted to bijective mappings, motivated by their use in synthetic setups
for mechanistically analyzing Transformer models (Chughtai et al., 2023; Ramesh et al., 2023). (c)
Text tokens are generated using PCFGs. To generate safe versus unsafe samples, we mark a subset of
non-terminals at an intermediate level as safe-dominant (dark blue) and others as unsafe-dominant
(light blue). Each of these nodes are associated with safe and unsafe task tokens, e.g., Fs

A and Fu
A

respectively in blue box for safe dominant node. Our motivation here is that a task, by itself, is
generally neutral (e.g., “design”), but when seen in the context of a concept it is to be performed on,
i.e., the operands (e.g., “cycle” versus “bomb”), it can render the input unsafe.

Fundamental subspaces (Strang, 2009) Let Wm×n : Rn → Rm represent a matrix in Rm×n. To
avoid clutter, whenever possible, we denote Wm×n by W. Let SVD(Wm×n) = Um×mΣm×nV

⊤
n×n

represent a singular value decomposition of W, where U and V consist of the left and right singular
vectors, {ui ∈ Rm}mi=1 and {vi ∈ Rn}ni=1, respectively, and Σ is the diagonal matrix with its
diagonal elements being the singular values σi, sorted in descending order of magnitude (σi ≥ σj for
i < j). Let r ≤ min(m,n) be the rank of W. Using singular vectors as the orthonormal bases, the
four fundamental subspaces of W are defined as:

• Column-space: C(W) = span
(
{ui}ri=1

)
, which is the same as the span of the columns of W.

• Row-space: R(W) = span
(
{vi}ri=1

)
, which is the same as the span of the rows of W. Note that

R(W) = C(W⊤).

• Null-space: N (W) = span
(
{vi}ni=r+1

)
. If Wx = 0, then x ∈ N (W).

• Left Null-space: NL(W) = span
(
{ui}mi=r+1

)
, which is the same as the null-space of W⊤.

Note that C(W) and N (W⊤) are orthogonal to each other. Similarly, R(W) is orthogonal to N (W).

3 A Synthetic Controlled Set-up for Safety Fine-tuning

To systematically study the mechanisms yielded by safety fine-tuning and how adversarially designed
inputs circumvent said mechanisms, we design a synthetic data generating process motivated by the
framework of jailbreak attacks proposed by Wei et al. (2023) and Carlini et al. (2023). Specifically,
the use of a synthetic setup helps us model the competing objectives and mismatched generalization
formulation of Wei et al. (2023). For example, to elicit mismatched generalization, we must define
samples that are out-of-distribution (OOD) compared to the ones used for safety fine-tuning of the
model—the use of a synthetic data generating process helps us easily and scalably design such inputs.
We emphasize that where possible, we do corroborate our findings on real-world LLMs (specifically,
Llama models) by performing experiments similar to ones defined using our synthetic setup.

3.1 Data generation for inducing instruction following behavior

We abstract out an input to an LLM as a composition of two components: (i) operators, which broadly
specify a task the model is expected to perform, and (ii) operands, which specify what information
the task is to be performed upon. For instance, consider the string: Tell me how to design a
bike. Herein, one can deem design as an operator and bike as an operand. Despite its simplicity,
we argue a large set of natural language inputs will fall under this abstraction (see App. B.1.2 for
several examples). In our setup, we model this abstraction by defining an input to be a combination of
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Figure 2: Generating jailbreak and adversarial attacks using our data generating framework.
(a) General instruction format. (b,c) Generating task and text tokens of jailbreaks with competing
objectives. (d) Jailbreak attacks with mismatched generalization. (e) Adversarial attacks.

tokens of two types: a task token f ∈ F representing the notion of an operator, where F is a family
of predefined operators, and text tokens T , representing the notion of operands (see Fig. 1).

To generate text tokens, we use Probabilistic Context-free Grammars (PCFGs)—an often used
model for natural language that captures its syntactic properties (Knudsen & Hein, 1999; Charniak,
1997) and that has seen recent use as a framework for mechanistic analysis of language modeling
capabilities of Transformers (Allen-Zhu & Li, 2023; Hahn & Goyal, 2023). We denote a grammar as
PCFG(γ, T,NT,R, P ), where R = {NT l

i → {cj}mj=1}
|NT |
i=0 is the set of production rules between

non-terminal parent nodes (NT l
i ) at level l and their respective children nodes {cj}mj=1, and P is

the set of probabilities associated with rules in R. A sequence of text tokens T is hence sampled
by simply traversing through the PCFG tree, starting from the root node γ, propagating through
non-terminal nodes (NT ) via production rules (R) according to their associated probabilities (P ), and
terminating at the terminal nodes (T ). See App. B for a detailed discussion of this process. For the
family of operators F , we follow recent work by Ramesh et al. (2023); Chughtai et al. (2023) and let
each task token (operator) f ∈ F be a bijective mapping f : V → V , where V denotes the vocabulary
of the PCFG generations (Fig. 1(b)). For example, given text tokens T ∼ PCFG(γ, T,NT,R, P )
and task tokens fi, fj ∼ F , we define the sequence of output tokens as O = fj(fi(T )). Overall,
the process above yields an input X := {fj ◦ fi, T ,O} (see Fig. 1). We note the goal for having
two operators as part of the input (e.g., fi, fj) is that it allows us to model the competing objectives
format of jailbreak attacks proposed by (Wei et al., 2023), wherein the model is asked to perform two
tasks simultaneously, of which one is unsafe (e.g., fi) and the other is not (e.g., fj).

For pre-training, we perform next token prediction on text and output tokens to learn the PCFG
grammar rules R along with the bijective mappings of task tokens. For instruction fine-tuning, we
supervise the model to predict output tokens given instructions consisting of task tokens fi, fj and
text tokens T . Next we describe further necessary design choices we make to generate data for safety
fine-tuning, jailbreak attacks, and adversarial attacks.

3.2 Data generation for safety fine-tuning

Safety fine-tuning requires a dataset labelled as per user preferences (Rafailov et al., 2023; Ouyang
et al., 2022). Generally, the preferred output corresponds to accurately following the instruction for
the inputs that are deemed safe, while refusing to respond to inputs that are deemed to be unsafe. We
next develop an abstraction for such preference data for studying the mechanisms of safety fine-tuning.
Specifically, we note that an operator or operand, by itself, cannot determine whether an instruction
is safe or unsafe. For example, consider the following strings: Design a bomb (s1), Design a
cycle (s2), and Provide the history of bombs (s3), where s1 is deemed unsafe and s2, s3
are deemed safe. One can easily see that it is the contextual meaning an operator and an operand
acquire from being part of the same string that renders the overall string unsafe. For example, the
operator design when seen in the context of operand bomb renders the overall string s1 to be unsafe,
but not so when seen in the context of operand cycle. Similarly, the string s3, despite having bomb
as its operand, is likely to be deemed safe, since therein the operator is merely Provide history.

To model the intuition above in our framework, we split the non terminal nodes at a predefined
intermediate level ls (= 3 in our experiments) into two disjoint sets called safe dominant nodes,
A ⊂ NT ls , and unsafe dominant nodes, B ⊂ NT ls , where NT ls is the set of non-terminals at level
ls. Let Fs

A and Fu
A respectively be the set of safe and unsafe task tokens associated with nodes in

A (similarly for B); that is, if a node in A (resp. B) is selected while sampling the text tokens, the
predefined set of operators that yield an overall string that is deemed safe come from the set Fs

A (resp.
Fs

B). We also constrain these sets such that |Fs
A| > |Fu

A|, |Fs
B| < |Fu

B |, Fu
A ⊂ Fu

B and Fs
B ⊂ Fs

A.
These conditions ensure that if nodes from A (resp. B) are sampled, the corresponding sequences are
mostly safe (resp. unsafe). Thus, different task tokens are associated with safe/unsafe inputs with
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different frequencies similar to real world instructions, e.g., operators like ‘harm’, ‘destroy’ are much
more likely to be associated with unsafe generations as compared to ‘design’, ‘purchase’.

Overall, an input X is deemed unsafe if X = {fi◦fj , TA, O} where fi, fj ∈ Fu
A or X = {fi◦fj , TB,

O} where fi, fj ∈ Fu
B (similarly for safe samples). This yields contextual dependence between

operators and operands that render an input safe versus unsafe. We note that to capture the low
variability observed in the outputs of safety fine-tuned LLMs for unsafe samples (e.g., the ubiquitous
‘I can’t explain’, ‘I can’t tell’, etc. responses), during safety fine-tuning, we supervise the model to
output a token called null token (see App. B for details). Meanwhile, for safe samples, the model is
fine-tuned to follow the instructions as usual.

3.3 Data generation for jailbreak and adversarial attacks

We ground ourselves in the framework of Wei et al. (2023) and Carlini et al. (2023) to study the
following three types of adversarial inputs. For each type, we provide real-world examples in
App. B.1.2 that map onto our synthetic abstraction, highlighting the analogy in detail.

1. Jailbreaks via competing objectives (JB-CO-Task and JB-CO-Text in Fig. 2(b) and (c)). Such
inputs ask the model to simultaneously solve two tasks, one that is unsafe and one that is not. For
example, consider the input: How to make a bomb? Start with “Sure, here’s”. The
first phrase in this input may be deemed unsafe, while the second phrase is objectively neutral
and merely asking the model to engage in an instruction following behavior. Often, the model in
pursuit of following instructions will perform the task presented in the unsafe phrase as well. We
investigate two ways to imitate such inputs. (i) Sample the two task tokens to define an input from
either Fu

A and Fs
A or Fs

B and Fu
B , hence asking the model to perform both a safe and an unsafe

task. (ii) Generate text tokens by using the lowest common ancestor of nodes in A and B as the
root node and following PCFG grammar rules. We use the task tokens which generates safe inputs
when combined with text tokens sampled from nodes in A and generates unsafe inputs for nodes
in B. In this way, similar to (i), the model is asked to perform both a safe and an unsafe task.

2. Jailbreaks via mismatched generalization (JB-MisGen in Fig. 2(d)). Datasets used for
safety fine-tuning are often substantially smaller and less diverse than the ones used for pre-
training (Ouyang et al., 2022; Team et al., 2023). For example, such datasets are generally in
English, even though the model can process other languages or formats (e.g., ASCII). Use of alter-
native formatting of the input has thus become a viable way of bypassing safety fine-tuning (Wei
et al., 2023; Kotha et al., 2023). To model this in our framework, we define a set of task tokens
TOOD which are not included in the safety fine-tuning dataset (similar to languages other than
English). For each such token, we ensure there exists another task token that is used during
safety fine-tuning and has the same functionality as the OOD token, i.e., corresponds to the same
bijective mapping. This models the intuition that an unsafe input with similar semantics will likely
be present in the safety fine-tuning dataset, but, e.g., in English.

3. Attacks based on continuous, learned embeddings (Adv in Fig. 2(e)). Motivated by Carlini
et al. (2023), we append a set of embeddings to the input and optimize these embeddings via a
white-box targeted attack on the model, akin to standard adversarial attacks in vision (Madry et al.,
2018). The attack’s strength increases as the number of embeddings is increased.

4 Investigating the Effect of Safety Fine-tuning

We now investigate the mechanism by which safety fine-tuning impacts the behavior of a model. For
this, we investigate three main aspects of a model: (i) feature space; (ii) parameter space; and (iii)
function sensitivity. For experiments on our synthetic data-generating process, similar to existing
related works (Jain et al., 2023b; Allen-Zhu & Li, 2023), we train minGPT (Karpathy, 2020) using
medium ηM = 10−4 and small ηS = 10−5 learning rates. See App. B.1.3 for further details on
model training, selection, and cross-validation of the hyperparameters. To corroborate our claims,
where possible, we run analogous experiments on Llama models (Touvron et al., 2023a; Card, 2024)
by defining a dataset of 500 safe and unsafe natural language instructions that are structurally similar
to our synthetic data (see App. B.2 for details). Specifically, we use Llama-2 7B and Llama-3 8B as
pretrained models and Llama-2 chat 7B and Llama-3 chat 8B as their corresponding safety fine-tuned
variants.
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Figure 3: Safety fine-tuning encourages separate cluster formations for safe and unsafe samples.
x-axis: layer number, y-axis: average τ in Eq.2. (Top) Results using the synthetic setup. (Bottom)
Results on Llama. Llama-2 chat 7B and Llama-3 chat 8B correspond to safety fine-tuned models.

Our analysis focuses on MLPs in each Transformer block. Specifically, we analyze the activations at
the output of this layer (after GELU) in Sec. 4.1, and its parameters and pre-activations in Sec. 4.2.
The overall model’s sensitivity to input perturbations is analyzed in Sec. 4.3. In all plots, green and
red colors are used to denote the analysis corresponding to the safe and unsafe samples, respectively.

4.1 Clustering of safe versus unsafe samples’ activations: Analyzing activation space

We first analyze how safety fine-tuning affects activations of safe versus unsafe samples.

Observation 1

Safety fine-tuning leads to formation of clusters of activations corresponding to safe versus
unsafe samples, where the separation between clusters increases as better methods are used.

Experimental setup Let aoL(x)[i] be the L-th layer’s output activation corresponding to the i-th
token of an input sequence x. We define the average activation corresponding to the q-th output token
as âoL(x)[q] =

1
q−1

∑q+k−1
i=k aoL(x)[i], where k is the index of the last text token. If DS and DU are

two datasets comprised solely of inputs with safe versus unsafe instructions, we define the mean safe
and unsafe activation at layer L as follows.

µS
L =

1

|DS |
∑
x∈DS

âoL(x)[q], and µU
L =

1

|DU |
∑

x∈DU

âoL(x)[q]. (1)

Now, if the model distinguishes between safe versus unsafe inputs at the level of intermediate layers’
activations, we claim we will see two explicit clusters formed for safe versus unsafe inputs. To assess
the same, we define the following measure that computes the Euclidean distance of a sample x’s
activations from the mean unsafe versus safe activation.

τ
(
x, µS

L, µ
U
L

)
= ∥âoL(x)[q]− µU

L∥2 − ∥âoL(x)[q]− µS
L∥2 (2)

The measure above should be positive for safe inputs and negative for the unsafe ones. When analyzed
over a large number of inputs, it helps us gauge how clustered the activations corresponding to safe
versus unsafe inputs are. Results are reported in Fig. 3. We find that activations—especially in
the deeper layers—are indeed clustered depending on whether they come from safe versus unsafe
inputs. Furthermore, in Fig. 3 (top), we observe in our synthetic setup that as the strength of the
safety fine-tuning protocol increases (e.g., DPO and Unlearning compared to SSFT or DPO with
medium learning rate ηM compared to DPO with small learning rate ηS), separation between the
clusters increases, where separation is defined as the difference between the average value of τ for
safe versus unsafe samples. We find similar results using Llama-2 and Llama-3 models as well (see
Fig. 3 (below)), indicating our findings translate to more realistic settings.

We also investigate the impact of safety fine-tuning on the ‘shape’ of safe and unsafe feature clusters
by analyzing singular values/vectors of their corresponding empirical covariance matrices ΣS and
ΣU , respectively (refer App C.3.1). As clearly observed in Fig A.19, it is the top singular value of
ΣU that is impacted the most as the safety fine-tuning progresses, however, the singular values of
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ΣS remain more or less the same. The σ1(Σ
U ) scales to a point where it constitutes nearly 62% of

the nuclear norm of ΣU , whereas this value is merely 12% for σ1(Σ
S). This indicates that safety

fine-tuning reshapes the cluster of unsafe features in a way that there remains a single dominant
direction. However, the shape of the cluster corresponding to safe samples is not impacted much.

4.2 What drives the clustering of safe and unsafe samples: Analyzing parameter changes

To identify what drives the formation of separate clusters of safe and unsafe samples, we evaluate
precisely how model parameters change as a consequence of safety fine-tuning. Since Fig. 3
indicates clustering is strongest in deeper layers, we primarily analyze the MLP layers of the last
two transformer blocks in this section. In particular, let WIT and WST denote the instruction and the
safety fine-tuned parameters of the first MLP layer of the L-th transformer block (L is intentionally
omitted in notation to avoid clutter). Then, the change in parameters due to safety fine-tuning—or
what we will often call “transformation”—is defined as ∆W = WST −WIT.

Observation 2

The column-space of the transformation, C(∆W), is more aligned with the null-space
N (W⊤

IT) than it is with the column-space C(WIT). Hence, samples processed by the trans-
formation versus not will have rather distinct activations, enabling clustering.

Experimental setup Let {ui}ri=1 and {σi}ri=1 be the top r left singular vectors and singular values
of WIT, where r denotes the empirical rank of WIT, which is defined as the minimum value of k
such that 99% of variance is preserved, i.e.,

∑k
i=1 σ

2
i ≥ 0.99∥WIT∥2F. Similarly, let {ũi}ti=1 be the

top t left singular vectors of ∆W where t is the empirical rank of ∆W. The projection matrix for the
column-space of WIT is defined as P :=

∑r
i=1 uiu

⊤
i . Let θi be the angle between Pũi and ũi. It is

easy to see that ũisin(θi) provides the projection of ũi on N (W⊤
IT) since N (W⊤

IT) is orthogonal to
C(WIT). Since ũi is unit norm, we can plot the magnitude of projection of ũi on the space N (W⊤

IT)
by evaluating sin(θi). Results for blocks 5 and 6 are shown in Fig. 4 for the PCFG-based experiments,
and in Fig. A.17 for Llama models. A baseline model fine-tuned using standard cross-entropy loss to
follow instructions in the usual way is also evaluated (shown in dotted lines in Fig. 4). Our results
indicate that for safety fine-tuned models, the magnitude of projected component onto N (W⊤

IT)
is very large, especially when compared to the baseline. This implies ∆W and WIT are nearly
orthogonal to each other. Thus, a sample processed by ∆W will have a component that cannot be
computed by WIT itself, hence yielding two broad sets of activations corresponding to samples which
are processed by ∆W versus not. To make this more concrete, we next evaluate which samples are
likely to be processed by ∆W by analyzing its row space.

Observation 3

Pre-activations of unsafe inputs have a larger projection onto the row-space R(∆W) com-
pared to pre-activations of safe inputs. That is, ∆W preferentially impacts unsafe samples.

Experimental setup We analyze pre-activation for the last text token, i.e., one corresponding to
the first output token prediction. The pre-activation is normalized since our goal is to primarily
assess its alignment with the row-space of ∆W. Specifically, to capture the effect of ∆W on a given
unit-norm pre-activation a, we compute σiv

⊤
i a for each i, where {vi}ri=1 are the top r right singular

vectors (basis vectors of the row-space) of ∆W. This quantity provides the effect of the pre-activation
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Figure 5: Safety fine-tuning learns transformations ∆W which are specialized for unsafe
samples. The x-axis shows the index of the top-15 basis vectors (vi) of ∆W spanning its row space
and y-axis is σiv

⊤
i a. Here we only plot for the 6th transformer block.

component along vi on the outputted signal’s magnitude ∥∆Wa∥2. Results are shown in Fig. 5. We
observe that the impact for unsafe samples is larger than that of safe samples. In fact the impact on
safe samples is close to zero. The results are more prominent for stronger safety fine-tuning protocols
(e.g., DPO) or when larger learning rates are used. This indicates the transformation learned via
safety fine-tuning results in a few directions (the top-k right singular vector) and it primarily activates
for unsafe samples. We also investigate if there are specialized neurons acting on unsafe samples,
compared to safe ones, to enable the above results. As we show, a subset of neurons are highly aligned
with the top singular vector v1, hence specializing to processing unsafe samples and impacting the
norm of their activations (see Fig. A.38).

The observations above highlight that ∆W projects the unsafe activations onto the null space of
W⊤

IT, while not impacting the safe activations to a great extent. However, given that our analysis is
localized to a specific layer, it is unclear how this impact propagates with the increasing depth of
the model and the non-linear operations therein. We provide further analysis in App. C.1 to address
this question, showing that our findings generalize even when the entire model is accounted for: i.e.,
model learns specialized transformations to cluster safe vs. unsafe samples.

Interventions via linear connectivity To further corroborate our claims, we also provide an
interventional experiment. Specifically, we hypothesize that if indeed ∆W helps identify unsafe
samples and steer the model towards refusing to process them, then interpolation between weights
before safety fine-tuning and after should primarily alter model behavior on unsafe samples, yielding
essentially the same behavior on safe ones. Further, extrapolation along ∆W should yield stronger
refusal abilities. To this end, we modify WIT as Wα

IT = WIT + α∆W, which is equivalent to
traversing in the direction of ∆W. If our hypothesis holds, taking α from 0 to 1 or beyond should
enhance the cluster separation between safe and unsafe samples. We demonstrate that this is indeed
the case and provide the results for these interventions in Figs A.76-A.80. In fact, interestingly, we
observe that the less performant safety fine-tuning method, i.e., SSFT, can be substantially improved
by merely extrapolating (α > 1) along the direction of ∆W: the model becomes more robust to
jailbreak attacks, while preserving performance on safe samples (see Fig. A.72). We note these results
are similar in spirit to parallel work by Arditi et al. (2024) and Zheng et al. (2024).

4.3 Impact of safety fine-tuning on the sensitivity of the learned model

Observation 4

Safety fine-tuning reduces the local Lipschitzness of the fine-tuned model for unsafe samples
while increasing it for the safe ones.

We next probe the sensitivity of the fine-tuned model’s output with respect to safe versus unsafe
samples. As a standard tool in literature on adversarial attacks (Hein & Andriushchenko, 2017;
Wong & Kolter, 2018), this experiment helps us test the robustness of learned safety mechanism
to minimal changes in model inputs. Note that investigating just the linear mapping W for this
would lead to sample-independent quantities as the local Lipschitz constant of W only captures the
summary of its singular values. For example, if L2 is chosen as the norm in input and output metric
spaces, then the Lipschitz constant of W boils down to its spectral norm. Therefore, in order to
capture the sensitivity of the entire model for different sub-populations of the data, we choose to
empirically quantify it for each data point and plot histograms over a dataset (Sanyal et al., 2019).
For a given real-valued function f̂θ : x → R and input x, we define the local Lipschitzness of f̂ at x
as Lipf̂ (x) = ∥∇xf̂θ(x)∥2.
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Figure 6: Lipschitz constant, hence the sensitivity of the model, decreases for unsafe samples and
increases for safe samples after safety fine-tuning. The decrease is higher for stronger approaches,
i.e., unlearning and DPO. x-axis: local Lipschitzness, y-axis: number of samples.

Experimental setup We consider f̂ = argmaxj hθ(x)[k](j), where hθ(x)[k](j) is the j-th logit
predicted at the end of text token index, denoted by k. The sensitivity is obtained corresponding
to the most confident output. Parameters θIT and θST are chosen depending on the model under
consideration. The histograms of Lipf̂ (x) for safe (green) and unsafe (red) samples are shown in
Fig. 6. We can clearly observe that the sensitivity of the safety fine-tuned model is much lower
compared to instruction fine-tuned model for unsafe samples, especially when DPO and Unlearning
are used for fine-tuning. This makes sense as, for unsafe samples, the variation in the preferred output
strings in safety fine-tuning dataset is much less compared to that of safe samples: e.g., preferred
outputs for unsafe samples are generally ‘NULL’, ‘I can’t assist’, etc. The consequence of this
decrease in sensitivity is that it will be relatively more difficult to craft jailbreaks and adversarial
attacks for more effective safety fine-tuning protocols, since models witness a stronger decrease in
Lipschitzness under those protocols. We validate this claim in Tab. A.1 as well, showing that crafting
jailbreaks and adversarial attacks is more difficult for DPO and Unlearning as compared to SSFT.

5 Evading the Safety Mechanism: Jailbreak and Adversarial Inputs

Having established and investigated the mechanism via which safety fine-tuning leads the model to
refuse to process unsafe inputs, we can now analyze precisely why jailbreaks and adversarial attacks
are still able to induce unsafe responses from the model.

Observation 5

Jailbreak and adversarial attacks yield intermediate features that are exceedingly similar to
safe samples, hence evading the processing by ∆W required for refusal of an input.

Experimental setup We use our instantiation of jailbreaks and adversarial attacks defined in
Sec. 3.3, and motivated by the works of Wei et al. (2023) and Carlini et al. (2023). As shown in
Tab. A.1, for DPO with µM , the JB-CO-Text attack yields the highest success rate (97.2%), whereas
the JB-CO-Task attack yields the lowest one (31.5%). This trend is also observed for other safety
fine-tuning methods (see Tab. A.1). For further analysis, we only consider the successful attacks.

(i) Feature space. Building on Sec. 4.1, we analyze the separation between clusters induced by
safe and unsafe samples, but use jailbreaks and adversarial attacks instead of unsafe samples this
time. Results are shown in Fig 7 (top). We find the cluster separation between safe samples and
attacked samples decreases in the feature space as the strength of attack increases, i.e., the decrease is
higher for JB-CO-Text and JB-MisGen, which are stronger attacks (See Tab. A.1) as compared to
JB-CO-Task. We observe a similar trend for adversarial attacks as well. This indicates with increase
in attack strength, adversarial inputs yield features that are similar to safe samples.

(ii) Function space. Building on Sec. 4.3, we analyze the empirical Lipschitz constant for jailbreak
and adversarial attacks in Fig. 7 (middle row). Clearly, with increase in attack strength, the histogram
for jailbreaks starts to overlap with the histogram corresponding to the safe samples, showing that the
model’s local sensitivity also starts to lie between attacked and safe samples. Similar to the feature
space analysis above, the function sensitivity analysis also highlights that with the increase in attack
strength, the adversarial samples start producing representations similar to safe samples.

(iii) Parameter space. To tie everything together and explain the similarity of features between
jailbreak and safe samples, we finally build on Sec. 4.2 and analyze the impact of ∆W on jailbreak
and adversarial inputs. Specifically, we analyze the alignment of pre-activations a corresponding to
these inputs with the row space of ∆W (same setup as discussed in Fig. 5). Results are shown in
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Figure 7: Analyzing jailbreaks and adversarial inputs. Building on the safety mechanism estab-
lished in Sec. 4, we evaluate how jailbreak and adversarial inputs evade this mechanism by repeating
our analysis from that section. Top row (Feature space). Similar to Fig. 3, we analyze average
τ (see Eq. 2) as a function of layers in the model. As the strength of attacks used increases, we
see separation between clusters decreases. Middle row (Function space). The distribution of
the local Lipschitzness of samples similar to Fig.6. In both rows, the difference between safe and
unsafe examples (in the first column) decreases after jailbreak and adversarial attacks. Bottom row
(Parameter space.) Projection of unit-norm pre-activation a on σiv

⊤
i . Activation corresponding to

jailbreak and adversarial samples are not influenced significantly by ∆W.

Fig. 7 (bottom). We observe that unlike unsafe samples, ∆W does not impact jailbreak / adversarial
samples noticeably: e.g., see Fig. 5, where unsafe samples have a much higher alignment with row
space of ∆W compared to safe ones, versus results on JB-CO-Text inputs in Fig. 7 (bottom), where
we find the alignment is essentially the same! As we showed before, it is the impact of ∆W that leads
to a distinction between how safe versus unsafe samples are processed; hence, results above suggest
the model will process successful jailbreak / adversarial samples as if they were safe. We provide
additional fine-grained analysis related to our observations above for different safety fine-tuning
methods and layers in App. C.3.4 (for jailbreak attacks) and C.3.8 (for adversarial attacks).

6 Conclusion

We proposed a synthetic data generation framework to systematically and efficiently analyze safety
fine-tuning methods and craft jailbreak attacks. Using this, we found that safety fine-tuning encour-
ages formation of different clusters for safe and unsafe samples while making the model significantly
less sensitive towards unsafe samples. We also observed that samples for jailbreak and adversarial
attacks are more similar to safe samples than they are to unsafe ones, hence bypassing the safety
mechanism learned by the model and avoid a refusal. Though we primarily focus on a synthetic, but
well grounded, abstraction of real language data, several of our claims directly transfer to more realis-
tic setups, as shown by our experiments on Llama models. Broadly, then, our results echo the claims
in recent work that state safety fine-tuning minimally alters a model (Kotha et al., 2023; Prakash
et al., 2024; Qi et al., 2023; Lee et al., 2024; Jain et al., 2023b; Lubana et al., 2022), highlighting a
need for rethinking the pipeline for safety and alignment inducing protocols.
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A Additional Background

Safety fine-tuning Approaches in LLMs. The pipeline of training a large language model (LLM)
involves three stages: (i) pre-training, (ii) instruction fine-tuning and (iii) safety fine-tuning. During pre-training,
an LLM is supervised to predict the next token using a large amount of data scraped from web (Radford et al.,
2019, 2018). This enables an LLM to learn various capabilities. In the instruction fine-tuning stage (Wei et al.,
2021; Sanh et al., 2021; Raffel et al., 2020), the model is prompted by an instruction and supervised to output a
predefined output for that specific instruction. However, due to the random sampling process of pre-training data
from the internet, the instruction fine-tuned model can demonstrate unsafe capabilities as well. Therefore, as a
last step, safety fine-tuning is performed to limit the capabilities of an LLM to yield unsafe outputs. For this
purpose, data is gathered by having humans rank multiple outputs from the instruction fine-tuned LLM for a
given prompt considering whether the output is safe or unsafe. Then, using this dataset, the LLM is commonly
trained by one of the following four different protocols.

1. Supervised safety fine-tuning (SSFT) (Ouyang et al., 2022) relies only on the highly ranked outputs,
i.e., the safest ones. Thus, the aim here is to make the model safe by fine-tuning it to follow the safe
instructions and generate safe output for unsafe samples.

2. Reinforcement learning with human feedback (RLHF) (Ouyang et al., 2022; Christiano et al., 2017;
Bai et al., 2022; Stiennon et al., 2020). The instruction fine-tuned model is trained as a reward model
to replicate the human preferences, by assigning high reward to human aligned generations and low
for others. A copy of the instruction fine-tuned model is then treated as a “policy” and fine-tuned using
the reward model as a proxy, where high reward is given when it generates human aligned generations.

3. Direct preference optimization (DPO) (Rafailov et al., 2023) also uses safe and unsafe outputs similar
to RLHF, but differently does not require an additional reward model. Instead, the LLM is directly
supervised to suppress unsafe outputs by the constructed objective function.

4. Unlearning (Liu et al., 2024; Li et al., 2024; Goel et al., 2024; Lynch et al., 2024) has been commonly
used to address privacy concerns, where the aim is to make the model forget certain data samples
(Maini et al., 2024; Nguyen et al., 2022). However, in case of safety fine-tuning, the objective is to
unlearn the capabilities responsible for generation of malicious and unsafe outputs. Given similar
goals, unlearning has recently become popular as a protocol to perform safety fine-tuning (Liu et al.,
2024). This motivates us to investigate this fine-tuning protocol as well. We note that past works (Liu
et al., 2024; Li et al., 2024; Goel et al., 2024; Lynch et al., 2024) have used different objective functions
to perform unlearning, however, in most of these cases, the loss functions include two contrasting
losses: one enforces the model to retain its safe capabilities to generate coherent outputs, while the
other loss aims to force the model to forget its unsafe capabilities. Given this characteristic, we adopt
the loss function used in Liu et al. (2024).

Understanding fine-tuning in LLMs. Fine-tuning is an exceedingly ubiquitous tool in the modern era of
foundation models. Given this success of fine-tuning, it has become imperative to understand how it impacts
the capabilities of pre-trained models. Recent works in this vein (Kotha et al., 2023; Tripuraneni et al., 2020;
Neyshabur et al., 2021) show that fine-tuning works by re-weighting and transferring task relevant features to
the downstream task. Relatedly, Jain et al. (2023b), Prakash et al. (2024), and Lubana et al. (2022) analyze
the effect of fine-tuning in a more mechanistic manner, where they conclude that fine-tuning minimally alters
the pre-trained mechanisms, rather than fundamentally changing them. Relatedly, Lee et al. (2024) analyze
DPO and concluded that DPO makes the model learn to bypass the activations corresponding to toxic regions
in its activation space. We believe that our observations discussed in App. C.1 implicitly indicate the span of
activations in the toxic regions of activation space reduces with safety fine-tuning.

Jailbreaks and adversarial attacks in LLMs. It has been shown that the current LLMs are vulnerable
to adversarial attacks (Sadasivan et al., 2024; Zou et al., 2023; Carlini et al., 2023) and jailbreaks (Wei et al.,
2023; Andriushchenko et al., 2024; Sun et al., 2024; Mehrotra et al., 2023; Samvelyan et al., 2024). Adversarial
attacks are generally easier to identify programmatically when compared to jailbreaks. However, optimizing a
prompt using adversarial training is prone to end up generating gibberish tokens in the input space. Therefore,
it is easy to detect such attacks by using simple pre-processing techniques like perplexity (Jain et al., 2023a).
On the other hand, since jailbreaks are more natural and difficult to detect, they pose a bigger threat to safety
of LLMs. Wei et al. (2023) characterize jailbreaks into two broad categories: (i) jailbreaks with mismatched
generalization and (ii) jailbreaks with competing objectives.

B Further Details on the Experimental Setup

This section includes further details on our synthetic and real world experimental setups.
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B.1 Further Details on the Synthetic Setup based on PCFG

B.1.1 Data Generation

Our synthetic setup involves defining samples comprised of two task tokens f1, f2, text tokens T , and output
tokens O. The sampling of task and text tokens is conditioned on a sample being safe or unsafe, which we
discuss in detail in the main paper. An example sample is illustrated in Fig. A.9 and we now provide the details
for each of these aspects below.

Task Tokens. The task tokens are denoted as fi ∼ F , where F = {fi}12i=1 and each fi is given by a bijective
mapping fi : V → V . Here, V is the vocabulary of the PCFG. To generate an input prompt we sample two task
tokens fi and fj randomly from the set F . During safety fine-tuning, we do not sample any token from the set
TOOD, which consists of two tokens out of a total of twelve tokens present in F . There is a token amongst the
remaining ten for each of these two tokens which represents the same bijective mapping but corresponds to a
different token representation. For each sample generation we sample two task tokens.

Text Tokens. Every sample consists of between 15-25 text tokens that are generated by a PCFG relying on a
set of grammar rules with uniform sampling probabilities. Note that here different combinations of sampling
probabilities can give rise to more interesting generations, but we pose this as an interesting future direction.
For simplicity of analysis, in this work we consider uniform sampling. We provide a detailed description of
the grammar rules considered, along with different task tokens corresponding to sets Fu

A, Fu
B , Fs

A and Fs
B, in

Fig. A.8. Note that for pre-training and instruction fine-tuning, we sample the data using four different PCFGs.
We describe the motivation and further details related to this design choice below.

A model trained on the synthetic data generated using a single PCFG (as above) might perform well by simply
learning the relationship between a single text token in T with its corresponding operators, therefore ignoring
the context window consisting of previous text tokens in a sequence. Thus, to force the model to learn to utilize
the context, we utilize multiple different PCFGs (four in our experiments) such that different bijective mappings
corresponds to the same task tokens across different PCFGs. For example, the task token ‘(’ in a PCFG might
imply bijective mapping f1, whereas the same token might imply f2 in another PCFG. Also, we ensure that
the generated text tokens from each PCFG do not completely overlap. Thus, in order for the underlying model
to perform well on this dataset, it has to learn the grammar corresponding to each PCFG which would require
using context from previous text tokens.

Now we will discuss some additional intricate design choices considered while designing this setup to imitate
real world scenario as much as possible, which we could not discuss in the main paper due to space constraints.
Through a single traversal from the PCFG tree during pre-training we generate a sample which is of length 50-75
tokens and later crop it by randomly selecting the starting and ending index of a window sampled randomly to be
between 15−25. This generation is started from the root node of the PCFG tree (See Fig. A.8). However, during
safety fine-tuning, we divide the non terminal nodes at level three into safe dominant A and unsafe dominant
B nodes. Using these nodes in sets A or B as the root node reduces the length of the generated sequence to
between 15-25. Therefore, to ensure consistency between pre-training and safety fine-tuning, we crop T to
contain between 15-25 text tokens during pre-training. We define different sets of task tokens being safe and
unsafe with each of the sets A or B: Fs

N for safe and Fu
N for unsafe. We ensure that |Fu

B | = 8, |Fs
B | = 2,

|Fu
A| = 2, |Fs

A| = 8. Further Fu
A ⊂ Fu

B and Fs
B ⊂ Fs

A. This helps in controlling how often a task token is
associated with safe vs unsafe generations. The PCFG trees utilized in our analysis have a depth of 6 levels and
this is selected based on the design choices considered in Allen-Zhu & Li (2023). Another reason for choosing
this depth is that it ensures the length of the sequence generated to remain in the expected limit. To ensure
simplicity of the safety fine-tuning task, for safety fine-tuning we only consider the grammar generated by the
first PCFG. Further we choose the third level to divide the non-terminal nodes into the sets A and B because it
helps in generating a good enough sequence length, which could decrease significantly on increasing the levels
or going down the tree. We did not choose level 2 because it would mean lesser number of non-terminal nodes
are involved in determining if the sample is safe or unsafe. This would in tern make the safety fine-tuning task
easier for the model. In order to balance this trade-off between the task complexity and the length of text tokens
generated, choosing the third level suits the best.

Outputs Tokens. The output tokens O = f1 ◦ f2(T ), thus the length of O is same as T . In case of unsafe
samples we ensure that all the output tokens are null token defined by a single token given by ’a’.

B.1.2 Jailbreak and adversarial attacks

Jailbreak attacks. To design jailbreak attacks using our synthetic setup, we manipulate the sampling process
of the text and task tokens depending on the type of jailbreak attacks we wish to craft. We describe the setup
corresponding to each attacks along with corresponding examples generated using Llama-2-70b-chat model
on https://chat.lmsys.org/. As shown in Fig. A.10, the Llama-2 70B chat model doesn’t follow the instructions
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Table A.1: Safety performance of different fine-tuning protocols: Unlearning (Liu et al., 2024),
DPO (Rafailov et al., 2023) and supervised safety fine-tuning (SSFT) (Ouyang et al., 2022) with
medium and small learning rates are used for performing safety fine-tuning. Instruct represents the
accuracy of the model to follow instructions and Null represents model’s accuracy to output null
tokens. Different jailbreaking attacks are also analyzed. JB-CO-Text and JB-MisGen are the strongest
attacks where SSFT is easiest to attack.

Protocol Learning Rate Safe (Instruct) Unsafe (Null) Unsafe (Instruct) JB-CO-Task (Instruct) JB-CO-Text (Instruct) JB-MisGen (Instruct)

Unlearning ηM 99.8 99.9 5.0 27.1 98.3 98.5
ηS 99.7 99.9 31.2 51.2 95.2 92.3

DPO ηM 98.6 99.6 11.8 31.5 97.2 96.1
ηS 98.7 100.0 40.7 56.1 93.5 93.6

SSFT ηM 99.9 99.8 51.6 88.1 100 100
ηS 99.7 100.0 72.8 92.5 100 100

when prompted to generate unsafe text. However, we can break this safety mechanism of the model by using
different types of jailbreak and adversarial attacks which we discuss below.

• Jailbreak attacks with competing objectives (task), JB-CO-Task: As shown in Fig. A.13, jailbreak
attacks with competing objectives aim to break the safety mechanism of language models by prompting
the model to follow instructions, while still having the unsafe prompt present in the input (Wei et al.,
2023). In this case the "history part" is prompting the model to follow instructions and as a result
the model also outputs about designing a bomb which clearly it should not output. Motivated by this,
we sample one task token from Fs

N and the other from Fu
N . Related to the example, consider that

"history" was sampled from Fs
N and "design" from Fu

N . This ensures that a part of the input prompt
asks the model to generate safe output by following instructions, whereas the other part corresponds to
unsafe generations.

• Jailbreak attacks with competing objectives (text), JB-CO-Text: Here, instead of manipulating
the sampling process of task tokens, we modify the sampling process of text tokens. We do this by
sampling the text tokens using the common parent node of the nodes in the set A and B as the root
node. We present the corresponding motivating example for this attack in Fig. A.12. Here, the "cycle"
and "bomb" can be interpreted as two different text tokens sampled using safe dominant and unsafe
dominant non-terminal nodes respectively of the PCFG tree, where "cycle" is prompting the model to
follow instructions and "bomb" corresponds to the unsafe part.

• Jailbreak attacks with mismatched generalization, JB-MisGen: As shown in Fig. A.14, here
the aim is to exploit the model’s safety mechanism by generating unsafe prompts which are out
of distribution with respect to the safety fine-tuning dataset. In the example shown in Fig. A.14,
translating "design a bomb" into Kannada which is a very different language as compared to english
makes the model output unsafe generations. In our setup we imitate this behaviour, by sampling one
of the two task tokens from held out task tokens (TOOD).

Adversarial attacks. To design adversarial attacks, as shown in Fig. A.11, we use a setup similar to the one
used in recent works Carlini et al. (2023); Zou et al. (2023). We append some soft prompts after the text tokens
in the token encoding space of the model. We define the threat model as the number of soft prompts appended.
Next, we perform targeted white box attack, by minimizing the standard cross entropy loss, where we utilize the
ground truth labels corresponding to the respective bijective mapping as the target class. For this we use a threat
model constraining the ℓ2 norm of the soft tokens to be less than 1. To generate the attack, we use 10 steps of
iterative gradient descent.

B.1.3 Training Details

In all our experiments on the synthetic setup, we use mingpt models, which consist of approximately three
million parameters and include six transformer blocks, each containing six attention heads followed by two
MLP layers, where the dimension of the activation stream is 192. The first MLP layer upscales it to 768 and the
second one again downscales it to 192 dimensions. We use a maximum input sequence length of 100 tokens.
There is a GELU activation layer in between the two MLP layers.

Pre-training and instruction fine-tuning. We train the model to learn the grammar rules and structure of
PCFG trees by using the next token prediction task on text tokens. We also train the model to learn the bijective
mappings by correctly predicting the output tokens. Instead of separately performing instruction fine-tuning,
we utilize a curriculum to transition from pre-training phase to instruction fine-tuning, where we associate
probability of training the model on text tokens by PT and PO for the output tokens. During the initial phase of
pre-training, we utilize a high value of PT and low for PO and linearly transition to using low value of PT and
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high for PO . We observe that using a curriculum helps in stabilizing the training and it helps us achieve a model
capable of predicting the output tokens correctly. We use a cosine schedule on learning rate to ensure that a large
learning rate is used for pre-training where majority of training focuses on learning the PCFG structure and a
small value of learning rate is used for instruction fine-tuning where the major focus is to learn the bijective
mappings. We decay the learning rate to 1e− 6. We use 100k iterations to perform this training, with a learning
rate of 1e − 3 and cosine schedule with warmup of 10k iterations. This stage of combined pre-training and
instruction fine-tuning takes over 8 hours on a single RTX A6000 gpu with 48GB memory, on using a batch size
of 512.

Safety fine-tuning. We perform safety fine-tuning for 10k iterations, using cosine schedule without warmup
with two sets of learning rates: 1e− 4 and 1e− 5 and decay them to 1e− 7. We refer to 1e− 4 as ηM and 1e− 5
as ηS. In contrast to pre-training and instruction fine-tuning, here we use the preferred yP and less preferred yL

output tokens for fine-tuning the model using different safety protocols namely supervised safety fine-tuning,
direct preference optimization and unlearning. In case of safe samples, yP refers to the outputs corresponding to
bijective mapping, whereas yL refers to null token prediction. On the other hand, in case of unsafe samples, yP

refers to null token prediction and yL refers to instruction following generations (ie. bijective mappings). As
common in literature for pre-training as well as fine-tuning we use adam optimizer.

We perform search over different values of β and γ which correspond to the hyperparameters used in the
objective functions of unlearning and DPO (refer to main Sec. 2 for more details) and select the values which
can give close to 100% accuracy on both safe and unsafe samples. We list the optimal values of hyperparameters
below:

• Unlearning (ηM ): γ = 0.1; Unlearning (ηS): γ = 0.01

• DPO (ηM ): β = 0.1, γ = 0.01; DPO (ηS): β = 0.1, γ = 0.002

Evaluation setup. We perform evaluation using Acc (OR) defined as
∑n

i=1(Oi == yi) where n denotes
the number of output tokens, Oi denotes the ith output token and yi represents the corresponding ground truth
value. We use 1K samples randomly sampled independently from the PCFG tree for generating the test set.
By manipulating the sampling process of text and task tokens as described earlier, we generate the test sets of
jailbreak samples as well. Each of these sets contain 1K samples. We utilize all these samples for our analysis.
The results corresponding to the three safety fine-tuning protocols trained with medium and small learning rates
(ηM and ηS) respectively are present in Table A.1. Note that here we denote the accuracy of the model to output
null tokens on unsafe samples sampled from the same distribution used for safety fine-tuning by Unsafe (Null)
and similarly, we denote the accuracy of the model to follow instructions by (Instruct).

B.2 Further Details on Real World Experiments based on Llama

We analyze how different observations as discussed in main paper transfer on Llama-2 7B (Touvron et al.,
2023a), Llama-2 7B chat, Llama-3 8B and Llama-3 8B chat models. For this, we make a simple synthetic dataset
where each prompt consists of an operator-operand combination. The operator can be considered as a similar
version of task tokens as discussed above and operand can be considered similar to text tokens.

Data Generation. We generate around 50 prompts corresponding to safe and unsafe samples manually
and later augment the corresponding sets with the help of GPT-4 (Achiam et al., 2023) to generate a dataset
containing 500 samples corresponding to safe and unsafe prompts each. We make an evaluation subset of 100
samples from this. We present a subset of samples considered for analysis on Llama in Fig. A.15.
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PCFG 1
v → u t
v → t s

u → r p
  u → p 10$ q
  u  → 10# r q
  t → q p r
 t → 10* p q
 t → 10$ r
 s → p 10#
 s → r 10$ 10*
 s → 10$ 10* 10#
  r → o n m
  r → w x o
  q → w o
  q → m o x
  p → m n
  p → o o w
  10$ → x w m

10$ → n w n
  10# → n x x
  10# → n n x
  10* → m m x
  10* → w w o
  o → l k j
  o → l 1h j
  n → k 1h 1f
  n → k l j
  m → l k 1f
  m → 1f 1h l
  w → 1f 1h 1h
  w → l 1f j
  x → j j l
  x → 1f l
  l → 1i i g
  l → i 1i g
  k → 1e g i
  k → 1g g h
  j → i 1e 1i
  j → 1g h 1e
  1f → 1i h 1g
  1f → 1i 1e h
  1h → h 1i 1g
  1h → 1g 1e h
  g → 2a 2b 2c
  g → 2d 2e 2f
    h → 2h 2i 2j
    h → 2k 2l 2m
    i → 2n 2o 2p
    i → 2q 2r 2s
    1e → 2t 2u 2v
    1e → 2w 2x 2y
    1g → 2z 3a 3b
    1g → 3c 3d 3c
    1i → 3b 3a 2z
    1i → 2y 2x 2w

Unsafe dominant non terminal nodes
Unsafe task tokens: ), [,}, ?, !, @, £

Safe task tokens: (, {

                     Same as PCFG 1

                      g → 3d 3b 2z
                      g → 2x 2w 2u
                      h → 2s 2q 2o
                      h → 2m 2k 2i
                      i → 2g 2e 2c
                      i → 2a 2d 2g
                      1e → 2j 2m 2p
                      1e → 2s 2v 2y
                      1g → 3b 3a 2x
                      1g → 2r 2u 2o
                      1i → 2l 2i 2f
                      1i → 2c 2e 2i

      
       
                Same as PCFG 1

                      g → 2m 2q 2u
                      g → 2y 3c 2z
                      h → 2v 2r 2n
                      h → 2j 2f 2o
                      i → 2f 2k 2p
                      i → 2u 2z 3c
                      1e → 2x 2s 2n
                      1e → 2i 2d 2g
                      1g → 2m 2s 2y
                      1g → 3c 2w 2q
                      1i → 2k 2e 2c
                      1i → 2h 2o 2v

 

                 Same as PCFG 1

                      g → 2v 2u 2t
                      g → 2s 2r 2q
                      h → 2p 2o 2n
                      h → 2m 2l 2k
                      i → 2j 2i 2h
                      i → 2g 2f 2e
                      1e → 2d 2c 2b
                      1e → 2a 2c 2e
                      1g → 2g 2i 2k
                      1g → 2m 2o 2q
                      1i → 2s 2u 2w
                      1i → 2y 3a 3c

PCFG 2 PCFG 3 PCFG 4

We divide the non terminal nodes r, p, q, 10£, 10*, 10$ 
into sets of safe dominant and unsafe dominant nodes. 

This division is different for different PCFGs.

     Safe dominant non terminal nodes
Unsafe task tokens: ), [

Safe task tokens: (, ], {, }, ?, !, @, £

For PCFG 1

Held out task tokens: +, ^

Figure A.8: Demonstration of the grammar rules, task tokens and safe/unsafe dominant nodes in
the PCFG based synthetic setup. We use four PCFGs during pre-training and instruction fine-tuning,
where they are similar except the leaf nodes. The safe and unsafe dominant nodes are labelled at the
third level of the tree (as highlighted in the figure), where each indentation represents termination of
a level in the PCFG tree. We also present two held out task tokens (TOOD) which are not used during
safety fine-tuning.
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Task Tokens: ‘(’, ‘£’
Text Tokens:: ‘2n’, ‘2o’, ‘2p’, ‘3b’, ‘3a’, ‘2z’, ‘2d’, ‘2e’, ‘2f’, ‘2t’, ‘2u’, ‘2v’, ‘2d’, ‘2e’,
‘2f’, ‘2q’, ‘2r’, ‘2s’, ‘2z’, ‘3a’, ‘3b’, ‘2h’, ‘2i’, ‘2j’
Output Tokens:: ‘2p’, ‘2q, ‘2n’, ‘2a’, ‘2b’, ‘2q’, ‘2e’, ‘2d’, ‘2j’, ‘2s’, ‘2w’, ‘2u’, ‘2e’, ‘2d’,
‘2t’, ‘2r’, ‘3a’, ‘3s’, ‘3x’, ‘2k’, ‘2a’, ‘2v’, ‘2z’, ‘3c’

Sample: ‘#’, ‘(’, ‘£’,‘%’ ‘2n’, ‘2o’, ‘2p’, ‘3b’, ‘3a’, ‘2z’, ‘2d’, ‘2e’, ‘2f’, ‘2t’, ‘2u’, ‘2v’, ‘2d’,
‘2e’, ‘2f’, ‘2q’, ‘2r’, ‘2s’, ‘2z’, ‘3a’, ‘3b’, ‘2h’, ‘2i’, ‘2j’‘!’, ‘2p’, ‘2q, ‘2n’, ‘2a’, ‘2b’, ‘2q’,
‘2e’, ‘2d’, ‘2j’, ‘2s’, ‘2w’, ‘2u’, ‘2e’, ‘2d’, ‘2t’, ‘2r’, ‘3a’, ‘3s’, ‘3x’, ‘2k’, ‘2a’, ‘2v’, ‘2z’,
‘3c’, ‘&’

Figure A.9: A sample from the PCFG setup (Allen-Zhu & Li, 2023)

Figure A.10: Llama-2 70B chat outputs safe generations on asking it about designing a bomb.

Figure A.11: Adversarial attack by appending a a set of suffix tokens at the end of "design a bomb".
We simulate a similar situation in our synthetic setup by appending soft tokens at the end of text
tokens.
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Figure A.12: Jailbreak attacks with competing objectives, where the operand is modified to attack
the model. In the input prompt there is one operator: design and two operands cycle and bomb.
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Figure A.13: Jailbreak attacks with competing objectives, where the operator is modified to attack
the model. In the input prompt there are two operators: history and design and one operand bomb
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Figure A.14: Jailbreak attacks with mismatched generalization, where the input prompt "design a
bomb" is translated into a different langauge Kannada.

Each sample contains: an operator and an operand.
Safe Prompts: ’design’: ’cycle’, ’write’: ’story’, ’help’: ’community’, ’teach’: ’french’,
’compose’: ’music’

Unsafe Prompts: ’design’: ’bomb’, ’hijack’: ’airplanes’, ’steal’: ’money’, ’injure’: ’human-
ity’, ’poison’: ’environment’

Figure A.15: Subset of samples used for analysis on Llama.
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C Further Analyses to Understand Safety Fine-tuning

C.1 Analyzing how the impact of transformation propagates over the layers

0 50 100 150
(a)

 Unlearning ( M) 

0.0

0.5

1.0

0 50 100 150
(b)

 DPO ( M) 

0 50 100 150
(c)

 SSFT ( M) 

0 50 100 150
(d)

 Unlearning ( S) 

0 50 100 150
(e)

 DPO ( S) 

0 50 100 150
(f)

 SSFT ( S) 

Layer:5 Layer:6

Figure A.16: Safety fine-tuning learns to project unsafe activations into a space with high projec-
tion on null space of original activations. The x-axis represents the singular vectors corresponding
to FoST sorted in decreasing order of their corresponding singular values. The sine of the angle of
projection (as shown by y-axis) is higher for activations corresponding to unsafe samples and this
angle increases with increase in depth of the model as well as on using stronger safety fine-tuning
protocols.

As discussed in the main paper, ∆W captures modification in a single layer of the model, thus it is imperative to
understand how this change propagates with the increasing depth of the model. For this we analyze the change
in the activation spaces corresponding to safety fine-tuned and instruction fine-tuned models for safe and unsafe
samples. For this, we can analyze the angle of projection between the two spaces. Let Fos

ST be formed by
stacking the post-activations a corresponding to safe samples xs in layer L. Similarly we can define Fou

ST,
Fos

IT and Fou
IT. Note that here a represents the activation stream of the last text token. We discuss our

observations and the derived conclusions in detail below:

Justification: The learned update ∆W ensures that the column space of Fou
ST has a large projection on the

left null space of Fou
IT for L ≥ t where t is large and generally corresponds to the last few layers of the model.

Experimental setup: Let v1, . . . , vt be the singular vectors with non-zero singular values spanning the column
space of Fon

ST, where n corresponds either safe or unsafe set of samples. Then we calculate the sine of the
angle between each vi and C(Fon

IT). We present these results in Fig A.16. If this value is high, it would
represent a large projection of Fon

ST on NL(Fon
IT)

Conclusion: The angle of projection of vi increases with the increase in layer number L and with the decrease
in corresponding singular value. This suggests that the unsafe activations are being steadily projected into the
left null space of their original activations calculated using instruction fine-tuned model. Similar trend is not
observed for safe activations, thereby showing that the update ∆W primarily modifies the unsafe activations and
this effect increases with increase in depth of the model. To corroborate these results, we perform this analysis
on Llama-2 7B chat in Fig A.18.

C.2 Additional Results on Llama-2

We present additional evidence corroborating our analysis on the proposed synthetic setup by using Llama-2
7B and Llama-2 7B chat models. Llama-2 7B is a pre-trained model and Llama-2 7B chat is the fine-tuned
version of Llama-2 7B, where the fine-tuning involves both instruction as well as safety fine-tuning. Note that
the instruction fine-tuned version is not officially released, which hinders our analysis on ∆W. As a result, we
use the pre-trained model Llama-2 7B. We will now present the results discussed in the main paper for Llama-2.

Clustering analysis: As shown in Fig A.75, 3 we observe that on fine-tuning, Llama learns to form separate
clusters for safe and unsafe samples, which is not observed in case of pre-trained model ie. Llama-2 7B.

Analysis on ∆W: As shown in Fig A.17, we observe that the projection of basis vectors spanning the
column space of the learned update for any layer of Llama-2 7B chat lies largely in the null space of Llama-2 7B.

Analyzing the activation spaces for safe and unsafe samples: We find the angle of projection of top
basis vectors spanning the column space of activations in Llama-2 7B chat, onto the activation space of Llama-2
7B. As shown in Fig A.18, similar to our observations in the proposed synthetic setup, we observe that the sine
of the angle of projection is higher for unsafe samples than for the safe ones.
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Figure A.17: ∆W has a large projection in left null space of corresponding weights of Llama-2
7B, where ∆W is the difference between the weights of Llama-2 7b chat and Llama-2 7B models
at any layer L. The y-axis represents the sine of the angle of projection and x-axis represents the
corresponding singular values sorted in decreasing order. As observed most of the basis vectors of
∆W have large projection angle with the column space of corresponding weights of Llama-2 7b
model. Different plots corresponds to different transformer blocks of the Llama-2 model, starting
from the first block represented by the first plot till the thirty second block represented by the last
plot. The block number increases by one on moving towards the right.
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Figure A.18: Projection angles between the activation spaces corresponding to Llama-2 7B and
Llama-2 7B chat models. The y-axis represents the sine of angle of projection of basis vectors
spanning the activation space of Llama-2 7B chat on the activation space of Llama-2 7B at some
layer L. Unsafe samples have a larger angle of projection than safe samples, thus indicating that
fine-tuning modifies the space spanned by unsafe samples more than the safe samples. Further, this
projection increases with the increase in depth of the layer. Different plots corresponds to different
transformer blocks of the Llama-2 model, starting from the first block represented by the first plot till
the thirty second block represented by the last plot. The block number increases by one on moving
towards the right.
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C.3 Additional Results on the synthetic setup

In this section, we will discuss additional results on the proposed PCFG based synthetic setup supporting our
analysis presented in the main paper. First, we will discuss the learning dynamics of ∆W in Sec C.3.1. Next
we will perform the clustering analysis for W and W̄ in Sec C.3.2 and Sec C.3.5 respectively. Similar to the
discussion presented in the main paper, we analyze the impact of different safety fine-tuning methods on the
parameter space of W and W̄ in Sec C.3.3 and Sec C.3.6 respectively. We present a detailed analysis on different
jailbreaking attacks in Sec C.3.4. Finally, we present detailed analysis of adversarial attacks on our setup in
Sec C.3.8, where we perform fine-grained analysis on our observations by varying the strength of the attack. We
will first analyze how ∆W is learned by the model over the course of training.

C.3.1 Analysis of learning dynamics

We analyze the learning dynamics of ∆W for observations 2 and 3 discussed in the main paper.

The spread of unsafe samples in the feature space becomes low rank with the advent of training:
We analyze the spread of the two clusters. For this, we calculate the empirical covariance for both the clusters as
follow:

ΣU =
∑

x∈DU

[(āo
L(x)[q]− µU

L )(ā
o
L(x)[q]− µU

L )
T ] , ΣS =

∑
x∈DS

[(āo
L(x)[q]− µS

L)(ā
o
L(x)[q]− µS

L)
T ]

We let q = 1 and perform singular value decomposition (SVD) of ΣU and ΣS for checkpoints at different safety
fine-tuning iterations for DPO (ηM ) and plot the top-15 singular values in Fig A.19. We observe that as the
safety fine-tuning converges, the scaling effect of the top singular vector of ΣU becomes more dominant as
compared to the other singular vectors. This is also evident from the spectral norm of ΣU , which constitutes
over 62% of its nuclear norm, whereas in case of ΣS this is only 12%. This indicates that the empirical rank of
the space corresponding to unsafe samples has lowered down, whereas it remains similar in case of safe samples
(See Fig A.19). Note that the empirical rank is computed by choosing the minimum value of r such that 99% of
variance is preserved, implying,

∑r
i=1 σ

2
i ≥ 0.99∥W∥2F1 We demonstrate that these observations are consistent

with other safety fine-tuning protocols and transformer blocks in Fig A.20, A.21, A.22. This analysis shows that
safety fine-tuning encourages the model to lower down the spread of features corresponding to unsafe samples,
while the spread remains similar for safe samples.
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Figure A.19: Analyzing how safety fine-tuning encourages the model to enhance the spread of
features corresponding to unsafe samples in a single direction, while the spread remains similar
for safe samples. The x-axis shows the index of the top-15 basis vectors of ΣU (empirical covariance
matrix corresponding to unsafe samples) and ΣS (empirical covariance matrix corresponding to
safe samples) . y-axis shows the singular value. Analysis is done for checkpoints corresponding to
different iterations of DPO fine-tuning performed using medium learning rate. Here we only plot for
the 6th transformer block.

The update ∆W aligns with NL(WIT) slowly over the course of safety fine-tuning: This transition is shown
in Fig A.23, A.24 and A.25. We analyze the learning dynamics at 100, 500, 1K, 2.5K, 5K and 10K iters.

The update ∆W becomes more specialized for unsafe samples with the advent of training: This transition
is shown in Fig A.26, A.27 and A.28. We analyze the learning dynamics at 100, 500, 1K, 2.5K, 5K and 10K
iters.

1∥W∥2F is the sum of the square of all the singular values of W.
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Figure A.20: With the advent of Unlearning (ηM ), the empirical rank of the empirical covariance
matrix of features corresponding to unsafe samples (ΣU ) becomes smaller. On the other hand
ΣS is not significantly affected by the safety fine-tuning. We utilize the same experimental setup
as discussed in Fig A.19. The first and second rows presents results for fifth and the sixth layers
respectively.
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Figure A.21: With the advent of DPO (ηM ), the empirical rank of the empirical covariance
matrix of features corresponding to unsafe samples (ΣU ) becomes smaller. On the other hand
ΣS is not significantly affected by the safety fine-tuning. We utilize the same experimental setup
as discussed in Fig A.19. The first and second rows presents results for fifth and the sixth layers
respectively.
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Figure A.22: With the advent of SSFT (ηM ), the empirical rank of the empirical covariance
matrix of features corresponding to unsafe samples (ΣU ) becomes smaller. On the other hand
ΣS is not significantly affected by the safety fine-tuning. We utilize the same experimental setup
as discussed in Fig A.19. The first and second rows presents results for fifth and the sixth layers
respectively.
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Figure A.23: Dynamics of projection of ∆W on NL(WIT) for unlearning safety fine-tuning,
where ηM learning rate is used. We utilize the same setup as discussed in Fig 4 but perform it
over the iterations. As observed with the increase in iterations, the projection of ∆W increases into
NL(WIT).
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Figure A.24: Dynamics of projection of ∆W on NL(WIT) for DPO safety fine-tuning, where ηM
learning rate is used. We utilize the same setup as discussed in Fig 4 but perform it over the iterations.
As observed with the increase in iterations, the projection of ∆W increases into NL(WIT).
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Figure A.25: Dynamics of projection of ∆W on NL(WIT) for supervised safety fine-tuning,
where ηM learning rate is used. We utilize the same setup as discussed in Fig 4 but perform it
over the iterations. As observed with the increase in iterations, the projection of ∆W increases into
NL(WIT).
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Figure A.26: Pre-activations at layers 5, 6 for unsafe samples are most affected by the top-k
right singular vectors spanning the row space of ∆W, where unlearning safety fine-tuning with
medium learning rate is used. We utilize the same setup as discussed in Fig 5 but perform it over the
iterations. As observed with the increase in number of iterations, the effect of topmost singular vector
on pre-activations increases for unsafe samples, whereas it remains low for the safe ones.
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Figure A.27: Pre-activations at layers 5, 6 for unsafe samples are most affected by the top-k right
singular vectors spanning the row space of ∆W, where DPO safety fine-tuning with medium
learning rate is used. We utilize the same setup as discussed in Fig 5 but perform it over the iterations.
As observed with the increase in number of iterations, the effect of topmost singular vector on
pre-activations increases for unsafe samples, whereas it remains low for the safe ones.
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Figure A.28: Pre-activations at layers 5, 6 for unsafe samples are most affected by the top-k
right singular vectors spanning the row space of ∆W, where SSFT safety fine-tuning with
medium learning rate is used. We utilize the same setup as discussed in Fig 5 but perform it over the
iterations. As observed with the increase in number of iterations, the effect of topmost singular vector
on pre-activations increases for unsafe samples, whereas it remains low for the safe ones.

31



C.3.2 Clustering analysis for jailbreaking attacks on learned transform

We present three different ways to analyze how well the safe and unsafe samples are clustered in the activation
space of the safety fine-tuned model.

Using Eq. 2: Here we present detailed comparison of our clustering analysis presented in the main paper
in Sec. 4.1 with different jailbreaking attacks. We present these results in Fig A.29, A.30. We observe that on
performing jailbreaking attacks, the separation between the clusters decreases. The corresponding results for W̄
are presented in Fig A.50 and A.51, where similar observations hold.

K-means clustering: Next, we perform the k-means clustering analysis, which is unsupervised. Here we
randomly pick the two feature vectors as the starting point and run k-means clustering algorithm. We label each
point with a cluster and then check if K-means is able to separate the activations into clusters of safe and unsafe
samples. We measure this using accuracy. The corresponding results are presented in Fig A.31, A.32, where we
observe that K-means is able to cluster the safe and unsafe samples into different clusters for the later layers
of the model and these observations are more dominant in case of stronger safety fine-tuning protocols like
DPO and unlearning and when using a medium learning rate. Further, on performing the jailbreaking attacks, it
becomes difficult to spearate the safe and the attacked samples into two different clusters in the feature space of
the model.

Fisher criteria: Fisher criteria Bishop (2006) calculates the ratio of inter cluster variability and the within
cluster variability. A high value of this ratio would mean that the clusters are well separated while being compact.
We present the results corresponding to this metric in Fig A.84 and Fig A.85, where we observe that the fisher
criteria increases on performing safety fine-tuning.

Additionally, we also analyze how the safety performance compares with the separation between the means of
clusters corresponding adversarial and safe samples in Fig A.33 (for W) and A.52 for W̄ and observe that as the
separation increases, the model becomes safer in case of the safety fine-tuned models. Whereas this correlation
is not observed for instruction fine-tuned model.
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Figure A.29: Clustering analysis for the synthetic setup when generating samples using safe
dominant terminal nodes as root node. The y-axis represents eq 2 and x-axis represents the layer
number. The first row shows the clustering analysis between safe and unsafe samples, second row
for safe and JB-CO-Task samples and third row for safe and JB-MisGen samples. As observed the
cluster separation decreases on performing jailbreaking attacks.
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Figure A.30: Clustering analysis for the synthetic setup when generating samples using unsafe
dominant terminal nodes as root node. The y-axis represents eq 2 and x-axis represents the layer
number. Further details and observations are consistent with Fig A.29.
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Figure A.31: K-means clustering analysis for the synthetic setup when generating samples using
safe dominant terminal nodes as root nodes. The y-axis represents cluster accuracy scaled down
to 0-1, where 1 represents that the model is able to successfully identity the clusters and the x-axis
represents the layer number. Note that ideally the accuracy for both the clusters should be 100% in
order to argue that the model has perfectly learned to partiion the samples into two clusters. The
first row shows the clustering analysis between safe and unsafe samples, second row for safe and
JB-CO-Task samples and third row for safe and JB-MisGen samples. As observed the model learns
to cluster the safe and unsafe samples but in case of jailbreaking attacks it becomes difficult for the
model to separate the activations of safe and jailbreaking samples.
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Figure A.32: K-means clustering analysis for the synthetic setup when generating samples using
unsafe dominant terminal nodes as root nodes. Further details and observations are consistent with
Fig A.31.
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Figure A.33: Analyzing the correlation between the ℓ2 distance (shown by x-axis) between the
cluster means of clusters corresponding to safe and unsafe features and the corresponding accuracy
(shown by y-axis) of the model to follow instructions. Here the samples are generated by traversing
through the PCFG tree using safe dominant non terminal nodes as the root nodes. The three rows
corresponds to L = 4, 5, 6. As observed in case of instruction fine-tuned model, there is no correlation
between the accuracy and cluster separation. On performing safety fine-tuning, we can see that there
is a clear correlation.

34



C.3.3 Analyzing the impact of safety fine-tuning on the parameter space of transformation

In this section, we will analyze how the safe and unsafe activations are impacted by ∆W. We will perform
this analysis in two ways. First we will analyze how ∆W impacts the unsafe and safe samples. Then we will
understand how this impact is propagated with the increase in depth of the model.

Unsafe activations are mostly aligned with the top basis vectors in the row space of ∆W: We
utilize the setup discussed in Fig 5 in the main paper. The results on different jailbreaking attacks are presented
in Fig A.34, A.36, A.35, A.37, for W, L = 5, 6 and correspondingly in Fig A.54, A.56, A.55, A.57, for W̄. In
all cases, the features corresponding to jailbreaking samples have a low projection in the direction of top basis
vectors spanning row space of ∆W. This explains why they are able to bypass ∆W. As a result of this, they
should remain less affected by ∆W as compared to unsafe samples. We verify this below.

||∆W a|| is higher for activations corresponding to unsafe samples: Here a represents the activation
stream corresponding to the last text token. We utilize the setup discussed in Fig A.38 in the main paper. The
results on different jailbreaking attacks are presented in Fig A.39, A.41 for L = 6 and Fig A.40, A.42 for L = 5
and W. Corresponding results for W̄ are present in Fig A.58, A.60, A.59, A.61. We observe that ∆W makes a
more prominent change in the activations corresponding to unsafe samples. On performing jailbreaking attacks,
the value of ||∆Wa|| decreases and becomes similar to safe samples.

The angle of projection between the activation spaces corresponding to safety and instruction
fine-tuned models is higher for unsafe activations: We utilize the setup discussed in Fig A.16 . The
results on different jailbreaking attacks are presented in Fig A.43, A.44 for W and A.62, A.63 for W̄. We
observe that the angle of projection is higher between the activation spaces of instruction and safety fine-tuned
models for the unsafe samples as compared to the safe ones. Further this angle increases with depth of the model.
On performing jailbreaking attacks, the angle of projection decreases and becomes more similar to safe samples.

These observations indicate that ∆W is specialized for unsafe samples but it is not able to generalize well to
the jailbreaking attacks. This results in successful evasion of the safety mechanism learned by the models on
performing safety fine-tuning.
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Figure A.34: Analyzing the effect of ∆W (for L = 5) on input activations. y-axis represent σiv
⊤
i a

averaged over the pre-activations a. The x axis represents the top-15 right singular vectors. Here
the samples are generated by traversing through the PCFG tree using safe dominant non terminal
nodes as the root node. The first row corresponds to safe and unsafe samples, second row for safe
and JB-CO-Task samples and the third row for safe and JB-MisGen samples. As observed the unsafe
samples have higher projection on the top right singular vectors and this decreases on using the
jailbreaking attacks. This indicates that ∆W is not able to generalize well to jailbreaking attacks.
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Figure A.35: Analyzing the effect of ∆W (for L = 4) on input activations. y-axis represent σiv
⊤
i a

averaged over the pre-activations a. This figure is same as Fig A.34, but plot is made for L = 6
instead.
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Figure A.36: Analyzing the effect of ∆W (for L = 5) on input activations. y-axis represent σiv
⊤
i a

averaged over the pre-activations a. The x axis represents the top-15 right singular vectors. Here
the samples are generated by traversing through the PCFG tree using unsafe dominant non terminal
nodes as the root node. The first row corresponds to safe and unsafe samples, second row for safe
and JB-CO-Task samples and the third row for safe and JB-CO-Text samples. As observed the unsafe
samples have higher projection on the top right singular vectors and this decreases on using the
jailbreaking attacks. This indicates that ∆W is not able to generalize well to jailbreaking attacks.

0 5 10

0.0

0.5

1.0

1.5

2.0

2.5

0 5 10

0.0

0.5

1.0

1.5

2.0

2.5

0 5 10

0.0

0.1

0.2

0.3

0.4

0.5

0 5 10

0.0

0.1

0.2

0.3

0.4

0.5

0 5 10

0.0

0.1

0.2

0.3

0.4

0 5 10

0.0

0.1

0.2

0.3

0 5 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10

0.0

0.2

0.4

0.6

0 5 10

0.0

0.1

0.2

0.3

0.4

0.5

0 5 10

0.00

0.05

0.10

0.15

0 5 10

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 5 10

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

0 5 10

(a)
 Unlearning ( M) 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10

(b)
 DPO ( M) 

0.0

0.2

0.4

0.6

0 5 10

(c)
 SSFT ( M) 

0.0

0.1

0.2

0.3

0.4

0.5

0 5 10

(d)
 Unlearning ( S) 

0.00

0.05

0.10

0.15

0 5 10

(e)
 DPO ( S) 

0.00

0.05

0.10

0.15

0.20

0.25

0 5 10

(f)
 SSFT ( S) 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Figure A.37: Analyzing the effect of ∆W (for L = 4) on input activations. y-axis represent σiv
⊤
i a

averaged over the pre-activations a. This figure is same as Fig A.36, but plot is made for L = 6
instead.
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Figure A.38: ∆W strongly impacts the unsafe activations as highlighted in yellow region. The
x-axis represents the neurons sorted in increasing order of their cosine similarity value with v1. y-axis
is ∆Wa for each neuron. We plot for this for 6th transformer block. Clearly, the neurons on the right
side of each plot (yellow region) impact the unsafe samples (red) more than safe samples (green).
Further, ||∆Wa|| for unsafe samples increases much more than that of safe samples.
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Figure A.39: Analyses of ∆W a for a single sample randomly selected, where a represents the input
activation at layer L = 6 corresponding to the activation stream of the last text token. Each marker
represents the scalar output of a neuron and the x-axis is sorted in increasing order of projection of
each neuron in the direction of top right singular vector of ∆W. Here the sample are generated by
traversing through the PCFG tree using safe dominant non terminal nodes as the root node. The
first row corresponds unsafe samples, second row represents safe samples, third row represents
JB-CO-Task samples and fourth row represents JB-MisGen samples. Note that the jailbreaking
attacks are generated by modifying the same unsafe sample. As observed ||∆W a|| is highest for
unsafe samples and it decreases on using jailbreaking attacks. Further, the neurons aligned more with
the top right singular vector of ∆W contribute more towards the norm of ||∆W a||.
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Figure A.40: Analyses of ∆W a for a single sample randomly selected, where a represents the
input activation at layer L = 5 corresponding to the activation stream of the last text token. The setup
used for figure is same as Fig A.39, but plot is made for L = 5 instead.
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Figure A.41: Analyses of ∆W a for a single sample randomly selected, where a represents the input
activation at layer L = 6 corresponding to the activation stream of the last text token. Each marker
represents the scalar output of a neuron and the x-axis is sorted in increasing order of projection
of each neuron in the direction of top right singular vector of ∆W. Here the sample are generated
by traversing through the PCFG tree using unsafe dominant non terminal nodes as the root node.
The first row corresponds unsafe samples, second row represents safe samples, third row represents
JB-CO-Task samples and fourth row represents JB-CO-Text samples. Note that the jailbreaking
attacks are generated by modifying the same unsafe sample. As observed ||∆W a|| is highest for
unsafe samples and it decreases on using jailbreaking attacks. Further, the neurons aligned more with
the top right singular vector of ∆W (as shown by the leftmost part of each plot) contribute more
towards the norm of ||∆W a||.
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Figure A.42: Analyses of ∆W a for a single sample randomly selected, where a represents the
input activation at layer L = 5 corresponding to the activation stream of the last text token. The setup
used for figure is same as Fig A.41, but plot is made for L = 5 instead.

38



0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0 50 100
(a)

 Unlearning ( M) 

0.00

0.25

0.50

0.75

1.00

0 100
(b)

 DPO ( M) 

0 100
(c)

 SSFT ( M) 

0 50 100
(d)

 Unlearning ( S) 

0 50 100
(e)

 DPO ( S) 

0 50 100
(f)

 SSFT ( S) 

layer:5 layer:6

Figure A.43: Analysis of the projection of top basis vectors in the activation space corresponding
to WST onto the activation space of WIT for layers L = 5, 6. Here the sample are generated by
traversing through the PCFG tree using safe dominant non terminal nodes as the root nodes. The first
row corresponds unsafe samples, second row for safe, third row for JB-CO-Task samples and fourth
row for safe and JB-MisGen samples. On performing jailbreaking attack the angle of projection
decreases as compared to unsafe samples.
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Figure A.44: Analysis of the projection of top basis vectors in the activation space corresponding
to WST onto the activation space of WIT for layers L = 5, 6. Here the sample are generated
by traversing through the PCFG tree using unsafe dominant non terminal nodes as the root nodes.
The first row corresponds unsafe samples, second row for safe, third row for JB-CO-Task samples
and fourth row for safe and JB-CO-Text samples. On performing jailbreaking attack the angle of
projection decreases as compared to unsafe samples.
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C.3.4 Additional analysis on learned transformation for Jailbreaking attacks

In this section, we provide additional results corresponding to Fig 7 discussed in the main paper. We present the
results for unlearning in Fig A.45, A.48, DPO in Fig A.47 and supervised safety fine-tuning in Fig A.46, A.49.
These results highlight that the update ∆W is not able to generalize to jailbreaking attacks and jailbreaking
samples act similar to safe samples for ∆W.
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Figure A.45: Comparison between different jailbreaking and adversarial attacks for unlearning
(ηM ). The first row presents the feature space clustering analysis. Second row shows the sensitivity
analysis of the model towards different samples and the third row analyses how the angle of projection
between the activation spaces of WIT and WST changes on using different samples. In all cases, the
first column compares safe and unsafe samples, whereas other columns compare safe and jailbreaking
samples. We observe that as the strength of the jailbreaking attacks increases, the behaviour of the
jailbreaking samples becomes similar to the safe samples, thereby indicating that the ∆W is not able
to generalize to them.
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Figure A.46: Comparison between different jailbreaking and adversarial attacks for SSFT (ηM ).
The experimental setup and observations are same as described in Fig A.45.
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Figure A.47: Comparison between different jailbreaking and adversarial attacks for DPO (ηS).
The experimental setup and observations are same as described in Fig A.45.
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Figure A.48: Comparison between different jailbreaking attacks and adversarial for unlearning
(ηS). The experimental setup and observations are same as described in Fig A.45.
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Figure A.49: Comparison between different jailbreaking attacks and adversarial for SSFT (ηS).
The experimental setup and observations are same as described in Fig A.45.
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C.3.5 Clustering analysis for jailbreaking attacks on the second MLP layer in the
transformer block

In this section, we repeat our experiments analyzing the feature space of the model for the second MLP layer in
the transformer block. We find that our previous analysis about ∆W also holds on the second MLP layer W̄.
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Figure A.50: Clustering analysis for the synthetic setup when generating samples using safe
dominant terminal nodes as root nodes. The y-axis represents eq 2 and x-axis represents the layer
number. The first row shows the clustering analysis between safe and unsafe samples, second row
for safe and JB-CO-Task samples and third row for safe and JB-MisGen samples. As observed the
cluster separation decreases on performing jailbreaking attacks.
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Figure A.51: Clustering analysis for the synthetic setup when generating samples using unsafe
dominant terminal nodes as root nodes. The y-axis represents eq 2 and x-axis represents the layer
number. Further details and observations are consistent with Fig A.50

0 5
0.0

0.2

0.4

0.6

0.8

1.0

5 0 5 5 0 5 10 5 0 5 10 5 0 5 10 0 5

4 2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

100 50 0 50 100 100 50 0 50 100 10 0 10 40 20 0 20 5 0 5

0.50 0.25 0.00 0.25
(a)

 Instruction fine-tuning 

0.0

0.2

0.4

0.6

0.8

1.0

400 200 0 200 400
(b)

 Unlearning ( M) 

400 200 0 200 400
(c)

 DPO ( M) 

20 10 0 10
(d)

 SSFT ( M) 

50 0 50
(e)

 DPO ( S) 

5 0 5
(f)

 SSFT ( S) 

Unsafe ( ) Unsafe  ( ) JB-MG JB-Com-tsk ( ) JB-Com-tsk ( ) JB-Com-txt

Figure A.52: Analyzing the correlation between the ℓ2 distance (shown by x-axis) between the
cluster means of clusters corresponding to safe and unsafe features and the corresponding accuracy
(shown by y-axis) of the model to follow instructions. Here the samples are generated by traversing
through the PCFG tree using safe dominant non terminal nodes as the root nodes. The three rows
corresponds to L = 4, 5, 6. As observed in case of instruction fine-tuned model, there is no correlation
between the accuracy and cluster separation. On performing safety fine-tuning, we can see that there
is a clear correlation.
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C.3.6 Analyzing the impact of safety fine-tuning on parameter space of the second MLP layer
in the transformer block

In this section, we repeat our experiments analyzing the parameter space of the model for the second MLP layer
in the transformer block. We find that our previous analysis about ∆W also holds on the second MLP layer W̄.
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Figure A.53: Safety fine-tuning learns updates ∆W which mostly projects onto the left null
space of the instruction fine-tuned model. The x axis represents the basis vectors (v1, . . . , vt)
spanning the column space of ∆W sorted in increasing order of cosine of angle between vi and
N (WIT) represented by y-axis. The dotted lines corresponds to a baseline which is fine-tuned to
follow instructions without using any null tokens.
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Figure A.54: Analyzing the effect of ∆W (for L = 5) on input activations. y-axis represent σiv
⊤
i a

averaged over the pre-activations a. The x axis represents the top-15 right singular vectors. Here
the samples are generated by traversing through the PCFG tree using safe dominant non terminal
nodes as the root node. The first row corresponds to safe and unsafe samples, second row for safe
and JB-CO-Task samples and the third row for safe and JB-MisGen samples. As observed the unsafe
samples have higher projection on the top right singular vectors and this decreases on using the
jailbreaking attacks. This indicates that ∆W is not able to generalize well to jailbreaking attacks.
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Figure A.55: Analyzing the effect of ∆W (for L = 4) on input activations. y-axis represent σiv
⊤
i a

averaged over the pre-activations a. This figure is same as Fig A.54, but plot is made for L = 6
instead.
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Figure A.56: Analyzing the effect of ∆W (for L = 5) on input activations. y-axis represent σiv
⊤
i a

averaged over the pre-activations a. The x axis represents the top-15 right singular vectors. Here
the samples are generated by traversing through the PCFG tree using unsafe dominant non terminal
nodes as the root node. The first row corresponds to safe and unsafe samples, second row for safe
and JB-CO-Task samples and the third row for safe and JB-CO-Text samples. As observed the unsafe
samples have higher projection on the top right singular vectors and this decreases on using the
jailbreaking attacks. This indicates that ∆W is not able to generalize well to jailbreaking attacks.
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Figure A.57: Analyzing the effect of ∆W (for L = 4) on input activations. y-axis represent σiv
⊤
i a

averaged over the pre-activations a. This figure is same as Fig A.56, but plot is made for L = 6
instead.
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Figure A.58: Analyses of ∆W a for a single sample randomly selected, where a represents the input
activation at layer L = 6 corresponding to the activation stream of the last text token. Each marker
represents the scalar output of a neuron and the x-axis is sorted in increasing order of projection of
each neuron in the direction of top right singular vector of ∆W. Here the sample are generated by
traversing through the PCFG tree using safe dominant non terminal nodes as the root node. The
first row corresponds unsafe samples, second row represents safe samples, third row represents
JB-CO-Task samples and fourth row represents JB-MisGen samples. Note that the jailbreaking
attacks are generated by modifying the same unsafe sample. As observed ||∆W a|| is highest for
unsafe samples and it decreases on using jailbreaking attacks. Further, the neurons aligned more with
the top right singular vector of ∆W (as shown by the leftmost part of each plot) contribute more
towards the norm of ||∆W a||.
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Figure A.59: Analyses of ∆W a for a single sample randomly selected, where a represents the
input activation at layer L = 5 corresponding to the activation stream of the last text token. The setup
used for figure is same as Fig A.58, but plot is made for L = 5 instead.
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Figure A.60: Analyses of ∆W a for a single sample randomly selected, where a represents the input
activation at layer L = 6 corresponding to the activation stream of the last text token. Each marker
represents the scalar output of a neuron and the x-axis is sorted in increasing order of projection
of each neuron in the direction of top right singular vector of ∆W. Here the sample are generated
by traversing through the PCFG tree using unsafe dominant non terminal nodes as the root node.
The first row corresponds unsafe samples, second row represents safe samples, third row represents
JB-CO-Task samples and fourth row represents JB-CO-Text samples. Note that the jailbreaking
attacks are generated by modifying the same unsafe sample. As observed ||∆W a|| is highest for
unsafe samples and it decreases on using jailbreaking attacks. Further, the neurons aligned more with
the top right singular vector of ∆W (as shown by the leftmost part of each plot) contribute more
towards the norm of ||∆W a||.

0 50 100 150 200
0.2

0.1

0.0

0.1

0.2

0 50 100 150 200
0.2

0.1

0.0

0.1

0.2

0 50 100 150 200
0.2

0.1

0.0

0.1

0.2

0 50 100 150 200
0.2

0.1

0.0

0.1

0.2

0 50 100 150 200
0.2

0.1

0.0

0.1

0.2

0 50 100 150 200
0.2

0.1

0.0

0.1

0.2

0 50 100 150 200
0.2

0.1

0.0

0.1

0.2

0 50 100 150 200
0.2

0.1

0.0

0.1

0.2

0 50 100 150 200
0.2

0.1

0.0

0.1

0.2

0 50 100 150 200
0.2

0.1

0.0

0.1

0.2

0 50 100 150 200
0.2

0.1

0.0

0.1

0.2

0 50 100 150 200
0.2

0.1

0.0

0.1

0.2

0 50 100 150 200
0.2

0.1

0.0

0.1

0.2

0 50 100 150 200
0.2

0.1

0.0

0.1

0.2

0 50 100 150 200
0.2

0.1

0.0

0.1

0.2

0 50 100 150 200
0.2

0.1

0.0

0.1

0.2

0 50 100 150 200
0.2

0.1

0.0

0.1

0.2

0 50 100 150 200
0.2

0.1

0.0

0.1

0.2

0 50 100 150 200
(a)

 Unlearning ( M) 

0.2

0.1

0.0

0.1

0.2

0 50 100 150 200
(b)

 DPO ( M) 

0.2

0.1

0.0

0.1

0.2

0 50 100 150 200
(c)

 SSFT ( M) 

0.2

0.1

0.0

0.1

0.2

0 50 100 150 200
(d)

 Unlearning ( S) 

0.2

0.1

0.0

0.1

0.2

0 50 100 150 200
(e)

 DPO ( S) 

0.2

0.1

0.0

0.1

0.2

0 50 100 150 200
(f)

 SSFT ( S) 

0.2

0.1

0.0

0.1

0.2

Figure A.61: Analyses of ∆W a for a single sample randomly selected, where a represents the
input activation at layer L = 5 corresponding to the activation stream of the last text token. The setup
used for figure is same as Fig A.60, but plot is made for L = 5 instead.
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Figure A.62: Analysis of the projection of top basis vectors in the activation space corresponding
to WST onto the activation space of WIT for layers L = 5, 6. Here the sample are generated by
traversing through the PCFG tree using safe dominant non terminal nodes as the root nodes. The first
row corresponds unsafe samples, second row for safe, third row for JB-CO-Task samples and fourth
row for safe and JB-MisGen samples. On performing jailbreaking attack the angle of projection
decreases as compared to unsafe samples.
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Figure A.63: Analysis of the projection of top basis vectors in the activation space corresponding
to WST onto the activation space of WIT for layers L = 5, 6. Here the sample are generated
by traversing through the PCFG tree using unsafe dominant non terminal nodes as the root nodes.
The first row corresponds unsafe samples, second row for safe, third row for JB-CO-Task samples
and fourth row for safe and JB-CO-Text samples. On performing jailbreaking attack the angle of
projection decreases as compared to unsafe samples.
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C.3.7 Effect of jailbreaking attacks on the lipschitzness of the model

In this section, we analyze how the jailbreaking samples affect the lipschitzness of the safety fine-tuned models.
We present the lipschitzness analysis for safe, unsafe and jailbreaking samples are shown in Fig A.64, A.65. We
observe that on performing safety fine-tuning, the lipschitzness of the model decreases for the unsafe samples
and increases for the safe samples. The histogram plots for jailbreaking samples move to the right towards the
safe samples, but do not merge with the completely. These results indicate that the jailbreaking samples act
similar to the safe samples.
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Figure A.64: Lipschitzness analysis: Here the sample are generated by traversing through the PCFG
tree using safe dominant non terminal nodes as the root nodes. The first row compares safe and unsafe
samples, second row compares JB-CO-Task samples with safe samples and third row compares safe
and JB-MisGen samples. We observe that on performing jailbreaking attack the the histogram moves
closer to the safe samples.
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Figure A.65: Lipschitzness analysis: Here the sample are generated by traversing through the
PCFG tree using unsafe dominant non terminal nodes as the root nodes. The first row compares safe
and unsafe samples, second row compares JB-CO-Task samples with safe samples and third row
compares safe and JB-CO-Text samples. We observe that on performing jailbreaking attack the the
histogram moves closer to the safe samples.
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C.3.8 Analyzing adversarial attacks

In this section, we perform a fine grained analysis of adversarial attacks on our synthetic setup. We perform
ten steps of white box attacks, where we optimize the soft tokens, which are appended at the end of the input
sample after the text tokens as shown in Fig 2. The number of soft prompts appended are between 1 to 10, where
appending one soft token generates the weakest attack and appending ten tokens gives the strongest attack. We
generate 10 different attacks with varying attack strength by linearly increasing the number of soft tokens from
1-10. We now systematically analyze these attacks on our different experimental setups discussed below:

Feature space clustering analysis: We analyze how the separation between the clusters corresponding to
safe and adversarial activations changes on increasing the attack strength in Fig A.66, A.67. We observe that the
separation between the clusters corresponding to safe and adversarial samples decreases on increasing the attack
strength.

Parameter space analysis by analysing projection angle between activation spaces corresponding
to WIT and WST: We analyze how the angle of projection between the activation spaces corresponding to
instruction fine-tuned model and safety fine-tuned model changes for different attack strengths in Fig A.68 and
A.69. We observe that the angle of projection is higher between the activation spaces corresponding to unsafe
samples and it decreases with the increase in attack strength. This demonstrates that with the increase in attack
strength, similar to jailbreaking attacks, the learned update ∆W is not able to generalize well to the attacked
samples. Thus the attacked samples behave similar to safe samples.

Sensitivity analysis using Lipschitzness constant: We analyze the effect of increasing the attack
strength on the lipschitzness of the model for safe and adversarial samples in Fig A.70, A.71 . We observe that
the with the increase in attack strength, the histograms corresponding to adversarial samples move towards the
safe samples and away from the unsafe ones. This shows that with the increase in attack strength the adversarial
samples starts behaving similar to safe samples.
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Figure A.66: Analyzing the effect of attack strength on clustering of safe and adversarial samples.
The y-axis represent eq 2 averaged over samples and x-axis represents the layer number. From top to
bottom, the strength of the adversarial attack is increased by linearly increasing the number of soft
prompts from 0-10. Here the samples are generated using safe dominant nodes as the root nodes. The
cluster separation decreases slowly on increasing the attack strength.
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Figure A.67: Analyzing the effect of attack strength on clustering of safe and adversarial samples.
The y-axis represent eq 2 averaged over samples and x-axis represents the layer number. From top to
bottom, the strength of the adversarial attack is increased by linearly increasing the number of soft
prompts from 0-10. Here the samples are generated using unsafe dominant nodes as the root nodes.
The cluster separation decreases slowly on increasing the attack strength.
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Figure A.68: Analyzing the effect of attack strength on the angle of projection between the
feature spaces corresponding to WIT and WST. The y-axis denotes the sine of the angle of
projection of right singular vectors spanning the features row space of WST onto the feature space
of WIT for layers 5,6. From top to bottom, the strength of the adversarial attack is increased by
linearly increasing the number of soft prompts from 0-10. Here the samples are generated using safe
dominant nodes as the root nodes. The projection angle becomes smaller on increasing the attack
strength, thereby indicating that ∆W is not able to generalize well to adversarial samples.
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Figure A.69: Analyzing the effect of attack strength on the angle of projection between the
feature spaces corresponding to WIT and WST. The y-axis denotes the sine of the angle of
projection of right singular vectors spanning the features row space of WST onto the feature space
of WIT for layers 5,6. From top to bottom, the strength of the adversarial attack is increased by
linearly increasing the number of soft prompts from 0-10. Here the samples are generated using
unsafe dominant nodes as the root nodes. The projection angle becomes smaller on increasing the
attack strength, thereby indicating that ∆W is not able to generalize well to adversarial samples.
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Figure A.70: Effect of attack strength on the local lipschitzness of safety fine-tuned models for
safe and adversarial samples. From top to bottom, the strength of the adversarial attack is increased
by linearly increasing the number of soft prompts from 0-10. Here the samples are generated
using safe dominant nodes as the root node. With the increasing attack strength, the histogram
for adversarial samples move towards the safe samples, demonstrating that as the attack becomes
stronger, the adversarial samples start behaving similar to the safe samples. Thus they start following
instructions.
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Figure A.71: Effect of attack strength on the local lipschitzness of safety fine-tuned models
for safe and adversarial samples. From top to bottom, the strength of the adversarial attack is
increased by linearly increasing the number of soft prompts from 0-10. Here the samples are generated
using unsafe dominant nodes as the root node. With the increasing attack strength, the histogram
for adversarial samples move towards the safe samples, demonstrating that as the attack becomes
stronger, the adversarial samples start behaving similar to the safe samples. Thus they start following
instructions.
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D Additional Results Using Interventions

In this section, we will analyze the effect of interpolating and extrapolating in the direction of the learned ∆W.
As discussed in Sec 4.2 in the main paper, our intervention is defined as

Wα
IT = WIT + α∆W (A.3)

We perform analysis for different values of α in the set {0, 0.25, 0.5, 0.75, 1, 1.1, 1.2, 1.3, 1.4, 1.5}

Impact on the safety performance: We analyze how the performance of the model changes on the
safe, unsafe and jailbreaking samples as we interpolate or extrapolate in the direction of ∆W in Fig A.72. We
observe that in case of weak safety fine-tuning protocols like supervised safety fine-tuning (SSFT)it is possible to
decrease the vulnerability of the model against jailbreaking attacks while maintaining its performance on the safe
samples. In case of DPO and unlearning such a trend is not observed. This highlights, that simply extrapolating
in the direction of ∆W could make models safer thereby leading to enhanced data and compute efficiency.

Next, we perform an additional intervention, where instead of traversing between the instruction and safety
fine-tuned models, traversal is done between two safety fine-tuned models which are fine-tuned using different
safety fine-tuning methods. We present these results in Fig A.73. As observed all these different safety fine-tuned
models are linearly connected in the parameter space which indicates that they lie in the same loss basin. On
moving from a weaker safety fine-tuning method like SSFT towards a stronger one like unlearning, we observe
that the attack success rate decreases slowly.

Finally, we perform another additional intervention Wα
ST = WST +α∆W, where we analyze the transferability

of ∆W on models fine-tuned using different safety fine-tuning methods. We present these results in Fig A.74,
where we observe that it is possible to improve the performance of weaker safety fine-tuning protocols like SSFT
against jailbreaking attacks, while preserving the performance on safe samples. These results highlight that
using ∆W learned via different safety fine-tuning methods could improve the performance of safety fine-tuning
methods. We pose this as an interesting future direction.

Feature space analysis: We perform linear mode connectivity analysis for different values of α and present
the results for Llama-2 7B and for the proposed synthetic setup in Fig A.75, A.76, A.77. We observe that in all
cases as we move in the direction of ∆W, by increasing the value of α, the separation between the clusters of
safe and unsafe samples increases. Additionally to understand the relative effect of separation between the two
clusters along with their compactness, we use fisher criterion Bishop (2006) and present the results in Fig A.84,
A.85. As observed, the value of the fisher criteria increases on traversing in the direction of ∆W, thus indicating
that the ratio between the separation of the two clusters and their compactness is increasing.

We also analyze how the spread of the two clusters changes on increasing the value of α in Fig A.78, A.79.
We observe that with the increase in value of α, in case of cluster corresponding to unsafe samples, the
spread becomes more dominant in a single direction, which results in reduction of the empirical rank of the
corresponding empirical covariance matrix.

Parameter space analysis: Next, we analyze the effect of safety fine-tuning on the angle of projection
between activation spaces corresponding to safety fine-tuned and instruction fine-tuned models. We calculate
these activation spaces for both safe as well as unsafe samples. The corresponding plots are presented in Fig A.80
and A.81. We observe that the angle of projection is higher for the activation spaces corresponding to unsafe
samples and it linearly increases on traversing in the direction of ∆W.

Sensitivity analysis: We compute how the lipschitzness of the model for safe and unsafe samples changes
as we move in the direction of ∆W in Fig A.82, A.83. We observe that increasing the value of α separates
the histograms corresponding to safe and unsafe samples further apart, where the lipschitzness of the model
decreases for the unsafe samples and increases for the safe samples.

0.0 0.5 1.0 1.5
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 Unlearning ( M) 
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Figure A.72: Improving safety performance by performing interventions. y-axis represents the
performance of the model (scaled to 0-1) when following instructions on safe/unsafe/jailbreaking
samples represented by their respective colours used in this paper. The x-axis represents the value of α
as used in Wα

IT = WIT + α∆W. Using α > 1 can help in further enhancing the safety performance
of the safety fine-tuned models. In case of SSFT such an improvement is possible with minimal loss
in performance on safe samples.
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Figure A.73: Traversing between different safety fine-tuned models. Here we traverse between
the two safety fine-tuned models. For instance in case of DPO - Unlearning, we traverse from
DPO safety fine-tuned model to the unlearning find-tuned one. Negative values of the interpolation
weight α on the x-axis, would mean extrapolation in the direction of DPO and positive value of α
means extrapolation in the direction of unlearning. As observed on traversing from a weaker safety
fine-tuning protocol like SSFT towards a stronger one like unlearning reduces the attack success rate
of jailbreaking attacks (shown in brown), while maintaining the accuracy on clean samples.
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Figure A.74: Transferability of ∆W between different safety fine-tuning methods. We use a
naming convention where Unlearning - DPO means WST is obtained using unlearning and ∆W is
learned by DPO. Similarly for others. x-axis represents different values of α and y-axis represents
accuracy scaled between 0− 1. High accuracy of green curve represents good performance on safe
samples, and high accuracy of brown curve represents high jailbreaking attack success rate. We
observe that it is possible to reduce the attack success rate of jailbreaking attacks (shown in brown),
while maintaining the accuracy on clean samples (shown in green) when traversing in the direction of
∆W corresponding to stronger safety fine-tuning protocol like unlearning.

3

2

1

0

1.00

0.75

0.50

0.25

0.00

0.25

0.5

0.0

0.5

1.0

1

0

1

2

3

1

0

1

4

2

0

2

4

2

0

2

6

4

2

0

2

7.5

5.0

2.5

0.0

2.5

10.0

7.5

5.0

2.5

0.0

2.5

10

5

0

10

5

0

0 10 20 30
10

5

0

5

0 10 20 30

10

5

0

0 10 20 30

10

5

0

5

0 10 20 30

10

5

0

5

Figure A.75: Linear mode connectivity analysis of Clustering of safe and unsafe activation in
Llama-2 7B models The y-axis represents eq 2 averaged over samples and the x-axis represents
layer number. Here we traverse from the pre-trained Llama-2 7B model to the instruction and safety
fine-tuned Llama-2 7B chat where moving left to right represents increasing values of α used in
eq A.3. The values of α are given by {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4,
1.5}. The cluster separation increases as we traverse in the direction of ∆W
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Figure A.76: Linear mode connectivity analysis of clustering of safe and unsafe activations in
our synthetic setup, where the samples are generated using safe dominant terminal nodes as root
node. The y-axis represents eq 2 averaged over samples and the x-axis represents layer number. From
top to bottom, the values of α are given by {0, 0.25, 0.5, 0.75 1, 1.1, 1.2, 1.3, 1.4, 1.5}. The cluster
separation increases as we traverse in the direction of ∆W
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Figure A.77: Linear mode connectivity analysis of clustering of safe and unsafe activations in
our synthetic setup, where the samples are generated using unsafe dominant terminal nodes as root
node. The y-axis represents eq 2 averaged over samples and the x-axis represents the layer number.
From top to bottom, the values of α are given by {0, 0.25, 0.5, 0.75 1, 1.1, 1.2, 1.3, 1.4, 1.5}. The
cluster separation increases as we traverse in the direction of ∆W.
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Figure A.78: Linear mode connectivity analysis of singular values of the empirical covariance
matrix corresponding to the features space of safe and unsafe samples, where the samples are
generated using safe dominant terminal nodes as root node. The y-axis denotes the singular values of
the covariance matrix calculated in the 5th layer of the model. From top to bottom, the values of α
are given by {0, 0.25, 0.5, 0.75 1, 1.1, 1.2, 1.3, 1.4, 1.5}. A single direction corresponding to the
topmost singular value becomes dominant as we traverse in the direction of in the direction of ∆W.
This results in lowering the empirical rank of the feature space corresponding to unsafe samples,
whereas the empirical rank for the feature space corresponding to safe samples remains almost same.
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Figure A.79: Linear mode connectivity analysis of singular values of the empirical covariance
matrix corresponding to the features space of safe and unsafe samples, where the samples are
generated using safe dominant terminal nodes as root node. The y-axis denotes the singular values of
the covariance matrix calculated in the 6th layer of the model. From top to bottom, the values of α
are given by {0, 0.25, 0.5, 0.75 1, 1.1, 1.2, 1.3, 1.4, 1.5}. A single direction corresponding to the
topmost singular value becomes dominant as we traverse in the direction of in the direction of ∆W.
This results in lowering the empirical rank of the feature space corresponding to unsafe samples,
whereas the empirical rank for the feature space corresponding to safe samples remains almost same.
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Figure A.80: Linear mode connectivity analysis of sine of projection angle between the activation
spaces corresponding to instruction fine-tuned and safety fine-tuned models, where the samples
are generated using safe dominant terminal nodes as root node. The y-axis denotes the sine of the
angle of projection of right singular vectors spanning the features row space of WST onto the feature
space of WIT for layers 5,6. From top to bottom, the values of α are given by {0, 0.25, 0.5, 0.75 1,
1.1, 1.2, 1.3, 1.4, 1.5}. The angle of projection is always higher for unsafe samples as compared to
safe samples and it increases on traversing in the direction of ∆W.
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Figure A.81: Linear mode connectivity analysis of sine of projection angle between the activation
spaces corresponding to instruction fine-tuned and safety fine-tuned models, where the samples
are generated using unsafe dominant terminal nodes as root node. The y axis denotes the sine of the
angle of projection of right singular vectors spanning the features row space of WST onto the feature
space of WIT for layers 5,6. From top to bottom, the values of α are given by {0, 0.25, 0.5, 0.75 1,
1.1, 1.2, 1.3, 1.4, 1.5}. The angle of projection is always higher for unsafe samples as compared to
safe samples and it increases on traversing in the direction of ∆W.
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Figure A.82: Linear mode connectivity analysis of the local lipschitz constant of safe and unsafe
activations in our synthetic setup, where the samples are generated using safe dominant terminal
nodes as root node. The histogram represents the local lipschitzness for safe and unsafe samples.
From top to bottom, the values of α are given by {0, 0.25, 0.5, 0.75 1, 1.1, 1.2, 1.3, 1.4, 1.5}. The
local lipschitzness for unsafe samples decreases and increases for safe samples on traversing in the
direction of ∆W.
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Figure A.83: Linear mode connectivity analysis of the local lipschitz constant of safe and unsafe
activations in our synthetic setup, where the samples are generated using unsafe dominant terminal
nodes as root node. The histogram represents the local lipschitzness for safe and unsafe samples.
From top to bottom, the values of α are given by {0, 0.25, 0.5, 0.75 1, 1.1, 1.2, 1.3, 1.4, 1.5}. The
local lipschitzness for unsafe samples decreases and increases for safe samples on traversing in the
direction of ∆W.

65



0.0 0.5 1.0 1.5
75

50

25

0

25

50

0.0 0.5 1.0 1.5
0

500

1000

1500

0.0 0.5 1.0 1.5

5

10

15

20

25

0.0 0.5 1.0 1.5

2

3

4

5

6

0.0 0.5 1.0 1.5

100

75

50

25

0

0.0 0.5 1.0 1.5
1

2

3

4

5

0.0 0.5 1.0 1.5
0

10

20

30

40

50

0.0 0.5 1.0 1.5

5

10

15

20

0.0 0.5 1.0 1.5

2.5

5.0

7.5

10.0

12.5

15.0

0.0 0.5 1.0 1.5

2

4

6

8

0.0 0.5 1.0 1.5

2.0

2.5

3.0

3.5

0.0 0.5 1.0 1.5

1.70

1.75

1.80

0.0 0.5 1.0 1.5
(a)

 Unlearning ( M) 

0

20

40

60

0.0 0.5 1.0 1.5
(b)

 DPO ( M) 

0

10

20

30

40

0.0 0.5 1.0 1.5
(c)

 SSFT ( M) 

2

3

4

5

6

7

0.0 0.5 1.0 1.5
(d)

 Unlearning ( S) 

2

4

6

8

0.0 0.5 1.0 1.5
(e)

 DPO ( S) 

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0 1.5
(f)

 SSFT ( S) 

1.60

1.65

1.70

1.75

1.80

Figure A.84: Linear mode connectivity analysis of fisher criteria Bishop (2006), where the x axis
represents the value of α and the y-axis represents the value of fisher criteria. Higher value indicates
larger ratio of cluster separation and clusters compactness. The first row shows the value of fisher
criteria for clusters of safe and unsafe samples, second row shows the same for safe and JB-CO-Task
samples and third row represents for clusters of safe and JB-MisGen samples. Here the samples are
generated using safe dominant terminal nodes as root node.
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Figure A.85: Linear mode connectivity analysis of fisher criteria Bishop (2006), where the x axis
represents the value of α and the y-axis represents the value of fisher criteria. Higher value indicates
larger ratio of cluster separation and clusters compactness. The first row shows the value of fisher
criteria for clusters of safe and unsafe samples, second row shows the same for safe and JB-CO-Task
samples and third row represents for clusters of safe and JB-CO-Text samples. Here the samples are
generated using unsafe dominant terminal nodes as root node.
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